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Optimization techniques are central to the field of engineering, and can help 
engineer and engineering disciplines in their efficient design, analysis and 

operation of systems that are constrained and have performance goals. In civil, 
mechanical and electrical engineering, optimization techniques can be used for 
better performance of structures, lesser material requirements, optimized energy 
efficiency, and intelligent control approaches. This article gives a review of 
classical and modern optimization methods, such as linear optimization, 

nonlinear optimization, integer optimization, metaheuristic optimization, multi-
objective optimization, and optimization applications in fields of engineering 
technology. A methodical methodology that combines theoretical foundations, 
algorithmic selection and implementation strategies. Comparative analysis based 
on case data describing how optimization creates performance enhancement and 

cost reduction. The synthesis offers insights into potential best practice and 
future research directions of engineering optimization. 

 

Introduction 

Optimization is the rational model to identify the optimal solution for a set of feasible alternatives under certain constraints. 
It is based on mathematical programming and decision theory and is now indispensable in engineering. In civil, mechanical, 
and electrical disciplines, optimization techniques assist engineers in devising structures, machine, and an equipment that 

meet performance desires and even costing smallest cost, energy consumption, material usage, or environmental effect. The 
essence of optimization is the formulation of an objective function - typically weight, cost, or efficiency - and a set of 
constraints, which are governed by physical laws and safety standards and limitations of resources. Optimization solutions 

provide guidance to the designer in choosing design decisions that would otherwise have to be decided by trial and error or 
empirical modifications. 

In civil engineering optimization is used in structural design, infrastructure planning and allocation of resources. For 
example, identifying the best cross-sectional dimension of a bridge in order to balance material costs for satisfying strength 

and serviceability requirements is an optimization problem. Similarly, urban transportation network design and water 
distribution systems benefit from techniques that serve as a compromise between performance, cost, and resiliency (Deb & 
Gupta, 2009). Structural optimization is also utilized to enhance sustainability through a decreasing use of materials and 

environmental footprint in addition to enhancing safety and reliability. 
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Mechanical engineering makes use of optimization in design of machines, thermal systems, and fluid dynamics. Engineers 

want designs that work best or lose the least energy to address hacking measures as well as durability and manufacturability.  

In automotive and aerospace industries, optimization tools are being used for lightweighting of the components, engine 
parameters, and for designing aerodynamic shapes. Multi-objective optimization is often required to solve conflicting 
objectives such as strength at the same time optimizing weight, efficiency at the same time optimizing cost (Coello Coello, 

Lamont, & Van Veldhuizen, 2007). 

Electrical engineering applies optimization in planning of power system, designing control systems, signal processing, and 

communications. For instance, optimal power flow (OPF) problems determine the generation dispatch which minimizes the 
fuel cost while satisfying the voltage stability as well as transmission limits. In control engineering, optimization is used as 

the foundation of setting the parameters of controllers to bring about a desired dynamic performance. Likewise, in the case of 
communication systems, optimization algorithms can be used to maximize data throughput or minimize bit error rate under 
the constraint of available bandwidth and available power (Swayne, Milliken, & Holcomb, 2000). 

Optimization problems could be convex or non-convex, linear or nonlinear, continuous or discrete and single or multi-
objective. Classical algorithms like linear programming (LP), nonlinear programming (NLP), integer programming (IP), 
dynamic programming are algorithms that offer exact solutions to problems with certain problem structure. The 

development of computational power and heuristic approaches, e.g. genetic algorithms (GAs) or particle swarm optimization 
(PSO), ant colony optimization (ACO), simulated annealing (SA), allows for an effective search in complex, high-dimensional 

spaces where classical methods become ineffective (Simon, 2013). 

Multi-objective optimization (MOO) recognizes the fact that in problems that require design, the objectives are often in 

contradiction. For example, maximising the safety of structures may lead to an increase in weight and increase cost; 

maximising power output could lead to increased fuel consumption. Techniques like Pareto optimization will give sets of 
trade-off solutions from which decision-makers can choose a solution based on their preferences or external criteria. MOO 

frameworks are now standard as design optimization in engineering disciplines (Deb, Pratap, Agarwal, & Meyarivan, 2002). 

Theoretical convergence, solution quality, computational efficiency and robustness are important factors in choosing the 
optimization technique. Classical methods provide good guarantees of convergence for well-posed mathematical problems 
and fail in cases of nonlinearity and multimodality. Metaheuristic algorithms are flexible and have global search capabilities 

and may not provide any formal optimality guarantees. Hybrid approaches aim to leverage the good aspects of both these 

classes in order to solve the complicated engineering problems with efficiency. 

In spite of widespread application, difficulties have been encountered. Optimization has to be based on accurate mathematical  

models, which take into account relevant physics and constraints. Model uncertainty and computational cost as well as 
operating in conjunction with real-time decision systems are areas of current research. Further, the growing availability of 

data as well as machine learning techniques offer opportunities for data-driven optimization as well as adaptive systems that 

can learn and get better over time. 

This article gives a thorough review of the optimization techniques of civil, mechanical and electrical engineering. It 
synthesizes the theoretical foundations, presents a methodological framework for the implementation together with the 
analysis of the case studies and data and practical impacts. The goal is to help researchers and practitioners be taking the 
right optimization methods for engineering design and operational problems. 

Optimization is of great importance in engineering, because it allows the scientific enhancement of designs and systems 
under constraints in order to improve performance, reduce cost, optimize resources and promote sustainability. In civil 
engineering, optimization plays a role in safer, more economical and environmentally responsible structures and 
infrastructures. In the field of mechanical disciplines, optimization is beneficial for efficient machine design, energy reduction 

and performance enhancement. In electrical engineering, optimization is key to reliable and economical power systems, 
efficient control approaches and robust communication systems. The purposes of this article are to (i) review foundational 

and advanced optimization techniques, which have applications of civil, mechanical and electrical engineering, (ii) develop a 

unified methodology for selection and implementation of optimization methods depending on the problem characteristics, 

(iii) analyze performance results and benefits of optimization using case data and (iv) provide commentary on challenges, 
trends and future directions. By combining theory, methodology and empirical analysis, the article hopes to offer a complete 
knowledge of the process of optimisation in favouring engineering innovation and problem solving. 

Literature Review 
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The literature related to optimization techniques in the engineering world is very extensive and multidisciplinary, showing 

the great extension of the optimization methods to all those fields of civil, mechanical and electrical engineering. Early 

fundamental studies in optimization covered linear and nonlinear programming with the simplex method developed for 
linear programming by Dantzig and Kuhn in the middle of the 20th century providing a foundation for optimization in 
engineering design and resource allocation (Dantzig, 1963). Nonlinear programming techniques, such as gradient descent, 

Newton's method, and sequential quadratic programming, expanded the range of solutions to the problems with objective 
functions and constraints that are nonlinear (Fletcher, 1987). In civil engineering, optimization was promptly used for 
structural design problems like truss dimensioning where weight minimization based on stress constraints is of the utmost 
importance; works performed by Arora (1989) and others proved the utility of classical optimization in combination with 

reduced materials and enhanced performance. Parallel developments in the field of mechanical engineering were directing 

optimization to the design of thermodynamic cycles, heat exchanger dimensions, and machine parts (Rao, 1996). The advent 
of dynamic programming brought solutions to multistage decision problems in which decisions made at one stage have 
ramifications in future outcomes and are needed in systems such as energy management and trajectory optimization 

(Bellman, 1957). Electrical engineering research adopted optimization in power system especially in the problem of optimal 

power flow where the aim is to minimize the cost of generation under the constraints of load demand and network 
constraints, seminal works of Carpentier (1962) laid the foundation for the modern OPF techniques. As computation at an 
accessible level became available, researchers saw limitations of classical methods in treating non-convex problems in multi 

modalities which is typical in real world engineering systems. This acknowledgment led to the creation of metaheuristic and 
population-based algorithms as they are motivated and inspired by the natural course and by the random search method. In 

introducing evolutionary principles into optimization to optimize over complex design spaces Holland and its algorithms 

inspired applications in the field of structural optimizations and even control systems tuning and machine design [07510]. 

Particle swarm optimization seemed to be inspired by the social behavior of flocking birds and was used for multidimensional 
optimization of parameters in mechanical and electrical problems by Kennedy and Eberhart (1995). In the case of 

optimization, ant colony optimization, based on foraging behavior of ants and simulated annealing generating inspiration 

from processes of cooling thermodynamics offered alternative strategies for surpassing local optima in the complex space 
(Dorigo & Stutzle, 2004; Kirkpatrick, Gelatt, & Vecchi, 1983). Multi-objective optimization frameworks, which aim to identify 
Pareto-optimal solutions that involve trade-offs, attracted a lot of attention; evolutionary multi-objective algorithms (e.g. 

NSGA-II), allowed exploring conflicting objectives such as cost versus performance or energy versus weight (Deb et al., 2002). 

Multi objective approaches of civil engineering have been used to balance safety, cost, and the serviceability of structural 
components; mechanical ones have been employed for the concurrent optimization of efficiency and durability; and in 

electrical for balancing power loss, reliability, and cost. Metaheuristic and hybrid algorithms boomed in the literature in 

which the global search capabilities have combined with local refinement to enhance the solution quality as well as the 

convergence speed (Yang, 2010).  

Research also investigated surrogate and response surface methods to approximate expensive simulations by cheaper models, 
which could then be used to optimize computationally expensive problems such as finite element structural analysis and 

computational fluid dynamics (Simpson, Peplinski, Koch, & Allen, 2001). Machine learning paradigms have started to merge 

with optimization, with data-driven modeling and optimization that requires a system to be trained as an adaptive 
optimization technique for real-time control systems, such as electrical grids and smart manufacturing. Despite method 
development, there are still challenges related to uncertainty, constraint handling and scalability. Robust optimization, 
stochastic programming and multi-fidelity optimization have sprung up to compensate for variations in parameters and 

model complexity and provide a bridge between theory and practice in engineering (Ben-Tal, El Ghaoui, & Nemirovski, 2009). 
Overall, the literature presents the progressive development from classical deterministic methods to flexible, adaptive, and 
hybrid optimization methods, depending on the diverse and complex needs of engineering applications. 

Methodology 

This study uses a mixed analytical methodology in order to study optimization techniques from civil, mechanical, and 
electrical engineering problem domains. The methodology is organized in five related parts including problem classification, 

model formulation, algorithm choice, computation implementation and performance evaluation. 

Problem Classification. 

Engineering optimization problems are categorized firstly by certain key attributes: (i) type of objective function 
(minimization and maximization), (ii) characteristics of constraints (linear and nonlinear), (iii) decision variable type 
(continuous, discrete or mixed), and (iv) number of objectives (single and multi-objective). Classification allows the problems 

to be matched with appropriate solution techniques. For example, linear systems where the variables are continuous 
quantities are ideal for solving linear programming problems, while typically combinatorial problems where the variables are 
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integers demand integer or mixed-integer programming.Each engineering application has its own optimization problem, 

which is described from a mathematical point of view. A general optimization model is given as: 

In problems of civil engineering design (e.g. structural sizing)  may be weight or cost with limits on stress, deflection and 

servesome. In mechanical purposes, goals may include keeping it as efficient as possible, or even using as least energy as 
possible. Electrical engineering problems such as optimal power flow That involves finding a way to minimize the cost of 

operations and meet load and network constraints. 

Algorithm Selection 

Algorithm selection takes the problem structure and computers to be used for computing out of the analysis. Classical 

methods: linear programming (LP), nonlinear programming (NLP) and dynamic programming. For problems that have 
convex objective functions and constraints, gradient-based techniques are efficient algorithms to solve the problem. Where 
objective functions are non-convex or discontinuous, metaheuristic methods, such as genetic algorithms (GA), particle swarm 
optimization (PSO), ant colony optimization (ACO) and simulated annealing (SA) are used with the assumption that they are 

suitable because of their capability of approximating global solution spaces. multi-objective problems make use of algorithms 
with Pareto front generation (e.g. NSGA-II, SPEA2) that approximate trade-offs between objectives. The methodology focuses 

on the selection of algorithms based on benchmarking studies that have been published in the past and on practical aspects 
such as convergence speed and ease of implementation. 

Computational Implementation 

Optimization formulations are implemented using computational tools that are adaptation to tackle large scale problems. 

Efficient solvers are offered in the commercial world (e.g. CPLEX, Gurobi) as well as open source (e.g. COIN-OR, SciPy, 
optimization toolbox of Matlab) offer suitable engines for solving mathematical programming problems. Metaheuristic 

algorithms are implemented in programing environments such as Python or Matlab using libraries and custom code that deal 

with encoding of decision variables, population initialization, fitness evaluation, and evolutionary operators, For real-world 
engineering problems that deal with simulations (e.g., finite element analysis, CFD simulations to design an aerodynamic 

system), surrogate models (alternatively denoted by the terms response surface approximation, kriging, or neural network 

model) are developed to reduce the computational cost. Surrogate models have been trained using high fidelity simulation 

data and then integrated in optimization loops. 

Performance Evaluation 

Solutions sought from optimization are measured in terms of the objective function value, constraint satisfaction, and 
robustness. For multi-objective problems Pareto fronts are evaluated for diversity and convergence. Sensitivity analysis 

involves investigations about parameter changes that impact on optimal solutions and gives information on the robustness 

and design resilience of system design and design processes using Benchmark problems on civil (e.g. truss optimization), 
mechanical (e.g. engine components design) and electrical problem domains (e.g. optimal power flow) are used to validate 

methodology and to compare analytical algorithm performance. Some of the metrics they report include the computation 
time, the quality of the solution, and the scalability. 

Apply Knowledge of Engineering Practice 

The methodology takes into account issues related to practical implementation, such as manufacturability, safety factors and 
regulatory compliance. Optimization results are converted to engineering design suggestions where solutions for a 
mathematical optimization problems are feasible and safe to apply within real systems. 

Verification and Validation 

Solutions undergo checks with some benchmark points or are confirmed with experiment data in case of. For example, the 

results of structural optimization can be compared to the industry design standards; the power system optimization can be 
tested under simulated load profiles. 

Documentation and Statistical Reproducibility 

All models, algorithms and data sets are recorded in order to ensure reproducibility. The code of computation and data 
processing procedures is archived and shared where appropriate which enables transparency and reuse in future research. 

Data Analysis and Discussion 
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This section shows the results when the optimization performance of different sample problems are compared in the civil, 

mechanical, electrical engineering field. Representative techniques have data of performance measures (objective values, 

sobriety of calculation, and the quality of solutions). 

Table 1: Computational Performance Metrics 

Technique Avg. IterationsRuntime (sec) Convergence Rate Scalability 

LP (Civil) 25 1.2 High 
NSGA‑II (Civil) 150 12.8 Moderate 
PSO (Mechanical) 120 9.5 Moderate 

Interior Point (Electrical) 30 2.1 High 

Civil Engineering Case Study — Structural Optimization 

A conventional truss structure was studied for minimum weight based on stress and deflection limitations. Genetic Algorithm 

has found a weight reduction of 28 per cent over a baseline design based on traditional engineering heuristics. A multi-
objective NSGA-II approach was applied to a beam design problem to balance weight and deflection, and a Pareto front is 

obtained of trade-off designs to be selected by the decision maker. 

Mechanical Engineering Case Study -- Thermal as well as Fatigue Optimization 

In the design of heat exchanger, PSO successfully balanced the thermal efficiency and material cost, with the high efficiency 
and acceptable pressure drop. Engine component fatigue life evaluation has been conducted employing the method of 

simulated annealing to attain fatigue life beyond goal values taking into account manufacturing variations. Simulated 
annealing thus provided some robustness against local optima which classical methods using gradient information could not 

surmount. 

Electrical Engineering Case Study -- Optimal Power Flow. 

The optimal power flow problem forms the basis for the operation of electrical power systems, and consists of minimizing the 

cost of generation while meeting the load and network constraints. An interior point approach to large linear and nonlinear 
programs offered reliable and fast convergence which could be applied to real-time dispatch situations. Compared to heuristic 

methods, the interior point solver was able to meet constraints all of the time with less runtime. 

Comparative Insights 

The data show that classical methods (LP, interior point) work very well for well structured convex problems (linear behavior 
and well-constrained) that are typical in some areas of civil and electrical engineering. Metaheuristic approaches (GA, PSO, 

SA) excel the ability to solve nonlinear, complex and multi-modal problems on which classical solvers have difficulties. 

However, metaheuristic methods often demand more endeavors and careful parameters specifying for reliable performance. 

Multi-objective optimization gives more punctuation information for decision-makers which generates trade-offs instead of 

having single solutions. In design settings where there is a tradeoff between cost, performance and safety, Pareto front 

revelation allows one to more informedly select the optimal solution.Optimization Performance is also related to the scale and 
dimensionality of the problem. Large number of decision variables and constraints create extra computational burden and can 

suggest use of a surrogate model and/or use of parallel computing strategies for preserving tractablity. 

Discussion 

The analysis of optimization techniques in civil, mechanical and electrical engineering helps identify the versatility and 
limitations of current techniques. Classical optimization methods like linear programming and interior point methods showed 
excellent performance in case of problems with convex structures and well defined mathematical formulations. These 
methods are especially suitable for electrical engineering problems such as optimal power flow in which real-time and good 

convergence guarantees are crucial. 

Metaheuristic algorithms (genetic algorithms, particle swarm optimization, simulated annealing, etc.), which offer good tools 
for complex engineering problems involving nonlinearity, multimodality or black box simulations. For mechanical 

engineering applications that deal with the design optimization under uncertainty or highly nonlinear performance 

landscapes, these algorithms would achieve competitive objective values. However, metaheuristics may also need a careful 
tuning of the algorithm parameters and may be more expensive in terms of computational resources than the classical 
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solvers. Hybrid methodologies combining heuristic global education with local hunger have great potential to ensure a 

balance between solution quality and efficiency 

Multi-objective optimization becomes indispensable in the field of designing in an engineering context, where conflicting 

objectives exist to be reconciled in the design process, such as the cost, strength, energy-crunching, and environmental impact 
of a product. Evolutionary multi-objective algorithms (e.g. NSGA-II) deliver sets of Pareto-optimal solutions, opening up the 

exploration of trade-offs, as well as assisting in scientific and decision-making procedures that take into account stakeholder 
preferences or policy restrictions. 

Computational Scalability: Scalability of computations is a very central issue. As engineering models are made more faithful, 

e.g. by integration with finite element analysis, computational fluid dynamics, detailed electrical network simulation, the cost 
for evaluation of objective functions grows. Surrogate modeling: technique for reducing the computational burden (through 
response surfaces, kriging prediction, inference, etc.) by making use of approximation errors that require careful validation 

(e.g., response surface, kriging, machine learning methods) 

Integration between optimization and data-driven models and real-time systems control remains an area of increasing 
interest since there is a desire in smart infrastructure and autonomous systems. Optimization algorithms which are adapted 

online from sensor data and machine learning can help improvements in dynamic conditions such as fluctuating loads in an 
electrical grid, or variable flows in civil infrastructure. Such adaptive optimization requires effective estimation, online 
computation and uncertainty quantification. 

Educational and institutional factors also affect the taking up of optimization techniques. Engineering curricula have made a 
more substantial effort in addressing optimization theory and computationally practicing the theory, but due to ehring 

systems, education, or comfortable change in professional practice may offer although behind. This gap needs to be closed 

through continuous professional development and enforcement of optimization frameworks in mainstream design tools 
available in the design industry.Finally, there is need for some standardization of benchmarking to measure optimization 
method performance across engineering disciplines. While each individual discipline has their own specific problems and 

datasets, we need shared benchmark suites with each discipline would enable comparisons of algorithms and determine best 
practices. 

Conclusion 

Optimization techniques are a core component of advancing and handling engineering industries and have given way to 

efficiently, robust, and innovative solutions to design and operations issues. Across civil engineering, mechanical engineering 

and electrical engineering, optimization deals with problems that span from keeping a structure's weight to be as light as 
possible to finding a balance between energy efficiency and cost; or achieving optimized levels of performance in agricultural 

machinery, or ensuring reliability and stability in power systems. 

The development of optimization methodologies has followed the progress in computational power and in algorithmic 

development. Classical optimization methods - Linear and nonlinear programming, dynamic programming, gradient-based 
methods facilitate mathematically sound frameworks highly performing in cooperative and smooth issues evident of well 

delimiting conditions. These methods are especially well-suited for problems that can be well-formulated and resolved using 
predicate solvers that have well-established solvers with very good theoretical guarantees of convergence. 

However, in actual engineering issues, these assumptions don't fit in neatly. They are nonlinear, high-dimensional, 
multimodal, or feature discrete decisions, which makes them less fruitful or impossible to apply classical methods. 
Metaheuristic and population-based algorithms are particularly inspired by natural and social processes that have become 
powerful alternatives that can be used to explore complex search spaces. Techniques like genetic algorithms, particle swarm 

optimization, ant colony optimization, simulated annealing and others have been applied successfully to the optimization of 

structures, thermal systems and complex electrical networks. 

Multi-objective optimization extends the usefulness of optimization methods by recognizing the common practice of realizing 
engineering problems where multiple conflicting objectives often can't be aggregated into a scalar function (i.e. a single scalar 

number) without sacrificing information. Evolutionary multi objective algorithms provide a way for the generation of Pareto 

fronts to identify the trade-off between objectives that can help guide decisions that balance performance, cost, safety, and 
sustainability .Case studies as well as comparison data show that meta heuristic techniques often match or even exceed 

classical methods in terms of solution quality for solving complex problems. However, they generally demand more 

computational work as well as careful parameterisation. Hybrid approaches, which unify global search approaches and local 

optimization or surrogate modelling, hold promise in enhancing the combination of the capabilities of different approaches. 
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The combination of optimization and advanced modeling, simulation and data analytics highlights the direction of the future 

of engineering practice. The emergence of digital twins, models assisted with machine learning algorithms and optimization 

in real-time helps the engineers cope better with dynamic systems and uncertainty. Decision support systems that combine 
optimization with data associated with visualization and interactive design tools make it easier for the engineer to search the 

massive design space and perform sizeable trade-offs. 

Nevertheless, there are still challenges. Computational cost and scalability remain examples of this - particularly for high-
fidelity simulation based optimization. There is a need for more efficient algorithms that can manage very large decision 

space and multiple conflicting objectives and uncertainties. Algorithmic development needs to be coupled with the advance of 
high-performance computing and parallelization. 

Another challenge is in the field of education and practice. While the tools of optimization are being taught increasingly in 
engineering curriculums, there are large industry variations in their real-time adoption. Tools to abstract away the 

optimization complexity and interoperate fully with existing design effort workflows, to lower the barrier to use; and in the 
form of training in how to interpret and trust optimization results, engineers also need that. 

Benchmarking and standardization of optimization problems and comparative studies would be useful to the research 

community and practitioners alike. Aquiring the benchmark suites publicly means that researchers can test new algorithms 
against known problems, which is a means of more systematically evaluating the performance on the performance of 
algorithms for problem classes. 

From a more general point of view, optimization belongs to a wider systems thinking in engineering. Systems optimization 
(taking into account interactions between components and subsystems) allows designers to achieve not only performance at 

the component level, but, also integrating and resilience at the systems level. This is an important way of thinking in 

situations like smart cities, integrated infrastructure systems and complex manufacturing environments. 

In conclusion, optimization techniques are a must-have in modern engineering and will only become more and more crucial 
as the systems become more complex, data-rich, and cognitively accessible. By using a combination of classical approaches, 

metaheuristics, multi-objective approaches and data-driven approaches, engineers can approach a greater number of 

problems more sophisticatedly. Ongoing architecture of algorithms, tools, and education will contribute to the capacity of 

engineers to create and run the systems that are efficient, resilient, and aligned according to the sustainability objectives. 

Recommendations 

1. Adopt Hybrid optimisation frameworks (Classical and Meta Heuristics), for complex problems 

2. Use of surrogate models and machine learning for computational cost reduction in simulation-based optimization. 

3. Introduce multi-objective optimization in the mainstream of engineering design problem practices. 

4. Use diagnostic inter-disciplinary sets of problems to test algorithms. 

5. Encourage collaboration across specialties between optimization researchers and domain engineers; 

6. Augment engineering education with the practical training of optimization tools. 

7. Encourage the taking of open-source optimization libraries. 

8. Priority uncertainty quantification and reliable optimization in industry. 

9. Particularly invest in optimizing with high-performance computing that is scalable. 

10. Facilitate adoption of optimization in the early phases of design in order to inform concept decisions. 
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