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Introduction

Partial Differential Equations (PDEs) are models for quantities distributed in space, which in time, evolve or in equilibrium,
due to the influence of physical laws. Examples are the Laplace and Poisson equations of electrostatics and steady state
diffusion, the heat equation of diffusion and thermal conduction, Navier-Stokes equations of fluid flow, Maxwell's equations
of electromagnetics, and systems of reaction diffusion in biology. The pervasive and manifold presence of PDEs in science and
engineering research makes the design and analysis of numerical solvers one of the most fundamental problems of
computational science (Evans, 2010; Quarteroni, Sacco, & Saleri, 2007).

Analytical solutions are only available for special PDEs with an imposed set of simplifying assumptions - constant coefficients
of the PDE, simple geometries of the considered problem, the use of the linearity of the problem, and the use of the ideal or
perfect boundary conditions. For most realistic problems - irregular domains, variable coefficients, nonlinearities, coupled
multiphysics effects - closed-form solutions are not at hand or are impractical to use. Numerical methods are a way to
approximate solutions to problems by discretizing continuous mathematical problems and solving finite algebraic systems on
computers (Morton & Mayers, 2005; Strikwerda, 2004). Over the past several decades a good variety of methods has been
developed: finite difference (FDM), finite element (FEM), finite volume (FVM), spectral and spectral-element methods, and
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discontinuous Galerkin (DG) methods. Accuracy, stability, conservation properties, geometric flexibility, and computational
cost are the strengths as well as trade-off properties of each class (Zienkiewicz and Taylor, 2000; LeVeque, 2002).

Finite difference methods approximate derivatives using difference quotients on structured grids In fact, finite difference
methods are relatively simple to implement, so they have been a natural choice in prototyping and for problems that are
defined on rectangular or protected meshes. However, FDM has difficulties with complicated geometries and shapes with
irregular boundaries. The finite element method (variational formulations), based on piecewise polynomials on unstructured
meshes, intrinsic implementation of complex geometry, heterogeneous materials and different kinds of boundary condition,
FEM can be widely used in structural mechanics, solid mechanics and multiphysics simulation.6, 9,10Ciarlet, J. (2002) The
finite element method for solid mechanics or structural and civil mechanics. Finite volume methods give a major emphasis to
the conservation of local time by integrating the governing equations over control volumes and balancing the fluxes across
faces; because of this property, FVM is particularly applied to conservation laws and computational fluid dynamics (LeVeque,
2002). In applications where a very high accuracy is required on simple geometries, spectral methods using global basis
functions, including trigonometrical polynomials or orthogonal polynomials, are preferred, and provide an exponential
convergence rate in case of solutions of class C*infinity.Spectral methods using for instance trigonometrical polynomials or
orthogonal polynomials provide an exponential rate of convergence when the solution is a smooth one-and are popular in this
specific type of application (Trefethen, 2000, Canute et al, 2007). Discontinuous Galerkin methods combine elements of FEM
and FVM in that there are discontinuities across element interfaces, the methods provide local conservation, high-order
accuracy and excellent parallelization properties - all of which have led to the use of these methods for hyperbolic problems
and high-performance solvers (Cockburn & Shu, 2001; Hestaven & Warburton, 2008).

A rigorous analysis of numerical approaches for the solution of PDEs considers three classical three pillars: consistency,
stability and convergence. Consistency provides that discrete equations match the continuous PDE, that is, that when mesh
parameters go to zero, they will match the continuity equations. Stability limits the rate at which numerical errors grow, and
is usually patch of conditions such as there Courant-Friedrichs-Lewy (CFL) constraint for explicit time integration methods.
Convergence (often a consequence of consistency and stability by the Lax equivalence theorem for linear problems), ensures
that the discrete ones become closer and closer to the continuous solution with refinement (Lax and Richtmyer; Strikwerda,
2004). Error analysis gives quantitative footing on these properties: a priori (estimates of convergence rates in suitable
norms under e.g. Cea's lemma Saddle Point principle): a posteriori (adaptive exploration of the mesh).

In addition to theoretical attributes, practical aspects of algorithms are determining. Large-scale three-dimensional
simulations commonly yield algebraic problems with millions to billions of unknowns; therefore, the selection of linear and
nonlinear solvers, preconditioners and data structures may be the dominating factors of the overall performance. CG/GMRES
mixed with multigrid/algebraic multigrid preconditioners are also a staple in elliptic and parabolic solvers with krylov
submarkets (Saad, 2003; Briggs, Henson, and McCormick, 2000). For advection-dominated or hyperbolic problems, Riemann
solvers, flux limiters and monotonicity-preserving reconstructions are also those key points for accuracy control of spurious
oscillations near discontinuities (LeVeque, 2002).

Advances in high-performance computing have an impact on the design of numerical methods: matrix-free formulations,
domain decomposition, parallelisation on Graphical Processing Units (GPUs), and cache aware assembly strategies have
gained particular importance to employ the latest new hardware in an efficient way. Moreover, hybrid and adaptive
approaches are also being sought in present day research, which requires spectral element methods, offering a combination of
the spectral accuracy and mesh flexibility, hp-adaptive finite elements with varying mesh size and polynomial degree, and
DG-FV hybridizations, to balance the accuracy and the computational cost (Schwab, 1998; Hesthaven and Warburton, 2008).

Following the same reasoning, because practical modeling tasks often involve the need to couple several physical processes,
multiphysics solvers that are robust and efficient have become an object of research. Coupled Systems Coupled systems pose
algorithmic problems (such as operator splitting developing versus monolithic solves, block structuring preconditioning, and
conservation at interfaces as well as stability in time jumps with radically different time scales). At the end finally, data-
driven components (reduced order models, learned surrogates, physics informed neural networks) are being explored as
complementary to classical discretizations specifically where fast approximations or inverse modeling are needed (research
evolving rapidly) and this article moves on to a literature review, methodology description of comparative experiments,
presenting of the data analysis using tables to summarize literature data, and concludes with discussion, conclusions and
recommendations based on both theory and computations experience.

Numerical methods for PDEs are important because they allow for predictive simulation where analytical solutions are not
possible: such methods inform design, policy as well as scientific inquiry in many areas of research like aerospace, climate
science, biomedical engineering, and energy systems (Quarteroni et al., 2007; Brenner & Scott, 2007). Reliable numerical
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solvers enable researchers to investigate the possible changes of parameters or to quantify uncertainties and to test
hypothesis that would be impossible to conduct experimentally. The working objectives are (1) to provide an integrated
comparative account of major numerical methods of PDEs and their theoretical underpinnings with practical issues of
implementation; (2) to test the methods on Standard elliptic, parabolic and hyperbolic model problems at the canonical scales
providing standard measures of error and the scaling costs of the solvers; (3) to analyze compromises in between accuracy
and stability, as well as conservation versus cost of computation; and (4) to give a working advice on methods choices, solver
choices and adaptivity strategies to practitioners and researchers. By combining rigorous analysis and empirical evaluation,
the article seeks to elucidate how to fit the characteristics of problems with the options of numbers and calls out some of the
open problems in future research.

Literature Review

The literature on numerical methods for partial differential equations is huge, and multidisciplinary, reflecting the
preeminence of partial differential equations in the mathematical, physical and engineering sciences. Much earlier underlying
work had defined approximation schemes of finite difference and concepts of stability Courant-Friedrichs-Lewy (CFL)
stability condition became one of the key determinants of explicit time-marching schemes (Courant, Friedrichs, and Lewy,
1928). Systematic treatments of finite difference methods for elliptic, parabolic and hyperbolic problems fell into the
literature (Morton & Mayers, 2005; Strikwerda, 2004), and issues of stability (von Neumann) and truncation error were dealt
with to prepare the way for convergence studies. Finite element methods finite difference in complex geometries became
limited, variational (weak) formulations or piecewise polynomial approximations codified in text books, Cea's lemma rigorous
error bounds Cea, Ciarlet (2002), Zienkiewicz & Taylor 2000 Mixed hybrid Methods Mixed Hybrid Methods Saddle point
problems Mixed or hybrid/mixed hybrid saddle point problems Incompressible flow. Finite volume methods (FVM) were
developed and come into vogue in computational fluid dynamics because of their conservative treatment - integral balance
over control volumes and flux-focussed discretization, they are robust for shock-capturing and compressible flow applications
(LeVeque, 2002). Godunov's pioneering work and Riemann-solver based flux functions gave rise to challenging high
resolution versions of the flux functions that led to later forms of the method such as MUSCL, ENO/WENO reconstructions
and flux limiters that increased the accuracy saving monotonicity (Harten, Engquist, Osher; LeVeque, 1992). Spectral
techniques (Gottlieb and Orszag 1977; Trefethen 2000; Canute and Orszag et al 2007) have proved that for smooth solutions
on simple geometries, global basis expansions of solutions (Fourier, Chebyshev), which give exponential rate of convergence,
encouraged the development of spectral-element variants of basis expansion to localize spectral accuracy to deal with
complex domains. Discontinuous Galerkin (DG) methods were a combination of the characteristics of FEM and FVM that
allowed high-order accuracy, local conservation, and hp-adaptivity; DG was especially popular for hyperbolic and convection-
dominated problems (Cockburn & Shu, 2001; Hestaven & Warburton, 2008). The invention of solver technology has run
parallel to that of the algorithms - Krylov-subspace solvers (CG, BICGSTAB, GMRES) with preconditioning is the backbone for
the linear systems that are large and sparse (Saad (2003)); multigrid methods (geometrical and algebraic) to get near-optimal
complexity for the elliptic operators (Brandt (1977), Briggs et al. (2000)). Error estimation and adaptivity- a priori and a
posteriori approaches- allow to efficiently resolve localized features. Residual based, goal-oriented and recovery based
estimators form the basis of automated h-, p- and hp-adaptivity frameworks (Babuska & Strouboulis; Ainsworth & Oden). For
time integration, where stiffness and diffusion occur, implicit schemes (Backward Euler, Crank-Nicolson) deal with stiffness
and diffusion but require the solution of large linear systems and IMEX schemes operator-splitting methods are based on
dealing with multi-scale temporal behavior where stiff terms are handled implicitly and non-stiff terms are handled explicitly
(Ascher, Ruuth, Spiteri). Conservation laws Stimulated research into monotonicity-preserving discretizations, entropy-stable
schemes TVD (total variation diminishing) Limiters (Tadmor ; Shu)geometry limiters Applying the TVD approach (Tadmor),
the solenoidal boundary vertices on geometry are penalized by assigning small coefficients to the discrete geometric boundary
vertices.Conservation laws Stimulated research into monotonicity preserving discretization Entropy stable schemes TVD
(total variation diminishing) limiters (Tadmor ; Shu)geometry limiters Applying the TVD approach (Tadmor), the solenoidal
boundary vertices on geometry are penalized On the high performance computing front, the matrix-free evaluation of
operators, cache efficient assembly, GPU support and domain decomposition techniques (Schwarz, FETI, BDDC) are playing
an important role in scaling PDEs solvers to today's architectures (Saad; Smith, Bjorstad, Gropp). Research studies have also
been diverted into uncertainty quantification (UQ) for PDEs -- stochastic Galerkin and collocation, multilevel approximations
such as Monte Carlo methods -- and inverse problems driven by the need for PDE-constrained optimization with efficient
adjoint and reduced-order modeling methods (Ghanem & Spanos; Giles & Pierce). More recently, also, there have been hybrid
approaches combining classical discretizations with machine learning: the use of learned preconditioners and of neural-
network based surrogates for expensive model components is promising while provoking questions about the generalization
and stability of such approaches (Raissi, Perdikaris, & Karniadakis; Brunton et al.). Throughout, rigorous mathematical
underpinnings and guidance along with practical advice are offered via authoritative textbooks and review articles (Evans,
2010; Quarteroni et al.,, 2007; Brenner & Scott, 2007) and a remarkable innovation continues to be provided by the
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computational PDE community through adaptivity as well as efficient, structure-preserving discretizations (mimetic and
compatible methods), multiphysics coupling, and the use of robust solvers used in tackling highly heterogeneous and
nonlinear problems. Overall, the emerging literature takes a pragmatic form, in that choice of method must be based on to
meet the problem characteristics ( smoothness, conservation requirements, geometric complexity, and available
computational resources ) and interaction of discretization accuracy and solver scalability.

Methodology

This paper uses a systematic approach to test methodologies and implementations of representative numerical methods
against each other for representative "classes" of PDEs (elliptic, parabolic, hyperbolic). The process of modeling contains the
choice of model, discretization methods, solvers, verification and validation, performance metrics, and design of experiments.

Model problems and fabricated solutions

To make it possible to take strict measurements of error equally rigorously, the method-of-manufactured-solutions (MMS) is
used: Select smooth analytical solutions and compute right-hand-side (forcing) terms and boundary conditions accordingly.
The representative model Partial Differential Equations, PDE, are:

° Elliptic (Poisson): On with Dirichlet/Neumann BCs.
° Parabolic (Heat): on.

e  Hyperbolic (Advection/Conservation): , linear advection, scalar nonlinear conservation law.Manufactured
solutions Exist perfect error calculation in norms (L2, L[?])Extract empirical convergence rates exist.

Spatial discretization techniques
Competence the following discretisations:

° Diffusion operators: central Finite Difference (FD) With advection: upwind-biased (UW). Considering findings
from the experiments with the Legendre and Shrapert polynomials, we propose some guidelines for successful FD
experiments by following structured Cartesian meshes.

° Finite Element Method (FEM): Continuous Galerkin (Lagrange Polynomial P1, P2, P3) Meshes are unstructured
(triangles in 2D, tetrahedra in 3D) which are generated using the standard meshing tools.

° Finite Volume Method (FVM): reconstructions second-order without slope limiters (MUSCL) of hyperbolic
equations, reconstructions cell-centered: Godunov-type equations, and slope limiters.

e  Spectral: spectral expansions Synthetic regular expansions Spectral-element Discretization Spectral-Element:
smooth global expansions of problems on smooth surfaces using high-order Gauss-Lobatto-Legendre nodes.

Breccasmi Global time in continuum After continuum discontinuities are introduced to remove galerkin discontinuities, the
element delineates the Boundaries (walls) of a domestic region instead of the floors (hexahedra) of extended spaces marked
by cells and their temporal occupancy In continuum field The finite element Method A finite element method, engineered on a
framework of interpolating polynomials, typically termed nodal, that represent the computational entity's geometry at its
interface with other portions of its computational environment.< |human | >Breccasmi

Time integration

Time stepping methods are also selected based on stiffness and accuracy requirements:Explicit (Forward Euler, RungeKutta
RK2/RK3) which are non-stiff hyperbolic with CFL based step sizes.

For diffusion-dominated parabolic problems Implicit (Backward Euler, Crank-Nicolson), to avoid stiff restrictions of the CFL
condition IMEX schemes for problems that mix stiff and nonstiff terms Adaptive time stepping for transient features taking
advantage of local error estimators.

Linear Agr elliptic solvers and Non linear solvers

Large algebraic systems are solved by using:Krylov methods: Conjugate Gradient (CG) for symmetric positive-definite
systems, GMRES for nonsymmetric systems [Saad, 2003]Preconditioners: geometric multigrid (GMG) and algebraic multigrid
(AMG) for elliptic operators, ILU and block preconditioners for coupled systems [Briggs et al., 2000]
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For DG and high order discretizations, matrix-free applications of operators in combination with block-Jacobi or additive
Schwarz preconditioners are implemented in order to enhance the scalability on parallel architectures.

Software Implementation and software

The developers have implemented the modular design to decouple the mesh handling, element/basis definition, assembly,
boundary condition enforcement, linear solve and I/O. Where possible, the existing libraries (e.g., PETSc, Trilinos, deal.Il,
FEniCS) are employed for solvers and mesh management in order to avoid the reinvention of low-level solvers and to prevent
injury from low-performance solvers in the context of propagating the success of large real-world simulations.

Verification, validation and convergence studies

Check the correctness of the codes using MMS and observe convergence with respect to theoretical rates i.e. order in L2 for
Pp finite elements assuming regularity conditions. (Brenner & Scott, 2007) Check the solver behavior using known
benchmark solutions, where applicable: Sod shock tube for hyperbolic solvers, analytical solutions for Poisson on simple
domains) Grid refinement studies (h-refinement) and where appropriate, p-refinement or hp-refinement studies in order to
investigate asymptotic rates.

e  Error norms and metrics.
e  Quantify accuracy with:

e Norm and norm of error.
e  Convergence rate via.

e CPU time/ timestep Time Total time w3 sched; Memory footprint; Blob size iterations/solver; timestep Yambique
Turn the solution we are announced for the benefit of all the country.

Adaptive strategies.

Implement a posteriori error estimation (residual based or recovery) for FEM and DG to drive AMR; Compare uniform
refinement versus adaptivity in terms of degrees of freedom vs error & etc. We need to go a bit more into proceeds & recall.

Experimental design.
For each class of model conduct experiments for:
° Several mesh sizes (i.e. coarse-fine), and polynomial degrees (p=1,2,3).
e  Solving the CFL-limited explicit timestepping implicit solver cost Time-step regimes exploring.

e  Heterogeneous Coefficient fields for testing the robustness to material property variation. Typically, weigh
outcomes and measure sources of accuracy and cost.

e  How reliable are the results?-reporting.

Document solver options, Mesh statistics, Boundary conditions and Hardware environment Share scripts and data files in
order to allow for reproduction, and graphical visualize results, i.e. put it into tables and plots to concisely compare your
results.

This methodology presents a holistic framework for comparing methods on the basis of fairness and to quantify the strengths
and weaknesses, and to contribute to the design of evidence-based recommendations.

Analysis of data and discussion

Overview of experiments and metricsWith the methodology described above, numerical experiments have been run for
representative model problems in two spatial dimensions on a workstation class machine (multi-core CPU). For each of the
PDE classes, a manufactured solution had given exact values for computation of error. The experiments are concerned with:
accuracy (L2 and L[?] norms), rate of convergence, computational cost (CPU time and memory), solver iteration counts and
robustness with respect to heterogeneous coefficients.

Results of the Elliptic (Poisson) Problem
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For the Poisson problem on a unit square with smooth manufactured solution, polymeric spectral methods (global
Chebyshev) for this problem had dramatically faster error reduction versus increasing resolution (exponential decay) than
polynomial-based FEM. For continuous Galerkin FEM:P1 elements showed about second-order L2 (empirical rates [2.0])
convergence on uniform triangular mesh elements.P2, P3 showed higher order convergence in agreement with the theory
(rates [3, 4], are theoretical rates, which require conditions of sufficient smoothness) (Brenner & Scott, 2007).

AMG-preconditioned CG showed fewer iterations and wall clock compared to unpreconditioned solves and multigrid showed
near-linear scaling with the problem size, thus proving to be suitable for large elliptic problems (Briggs et al. 2000). Spectral
methods had limitations in their applicability to simple geometries but for these had superior accuracy for a given degree of
freedom.

Parabolic (heat) problem Results

In transient diffusion problems, the small time steps were necessary for stability in explicit schemes, that is, in proportion to,
whereas in the implicit schemes (Backward Euler, Crank-Nicolson) much larger were permissible with extra cost per step due
to linear solves. IMEX schemes offered a compromise of advection and diffusion terms where both were present. For
sufficiently fine spatial resolution implicitly was more efficient in terms of the wall-clock time (a problem of the linear solve
overhead) given the AMG-preconditioned solvers were used.

Hyperbolic (advection/conservation) Problem Results

e  Hyperbolic tests using linear advection and smooth initial data, and using a scalar conservation law and
discontinuous initial data (formation of a shock). Findings include:

e  Low-order finite difference upwind schemes are robust, low cost and a significant numerical diffusion for sharp
features.

e Discontinuities and low numeric dissipation were resolved better by high-order WENO and DG method with
limiters with higher computational cost and memory consumption.

° Good conservation/ shock resolution was obtained using finite volume methods with Riemann solvers (HLLC, Roe)
and using slope limiters.

Refinement and efficiency of adapting

Adaptive mesh refinement based on residual-based a-posteriori error estimator to reduce the number of degrees of freedom
to solve a given error in problems with localized steep gradients and smooth regions. hp-adaptivity (combination of mesh
refinement and polynomial-degree increase) exhibited an efficiency that was better in problems with localized steep gradients
as well as smooth regions, although this implementation had increased implementation complexity and data structure
overhead.

Tables summarizing important comparative findings

Table 1 — Accuracy and method properties summary

Method Typical Convergence Strengths Weaknesses
Finite Difference (FD) 1st-2nd order Simple efficient on structured Poor with complex geometry
grids
Finite Element (FEM) 2nd-(p+1) for Pp Geometry flexibility, Higher assembly cost, solver
dependence

Table 2 — Performance and scalability summary

Method Memory Use Solver Sensitivity Parallel Scalability
FD Low Low High

FEM Moderate Moderate (precond needed) High

FVM Moderate Moderate High

Spectral Low-Moderate Low (dense) Moderate

The experimental results have reaffirmed the theoretical expectations, i.e. the spectral methods yield the highest accuracy
when applied onto smooth and simple domains, but due to the global nature of the method and the communications, the
global continuation becomes challenging when using the technique on large-size complex geometries. FEM is especially good
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at geometric flexibility and mature adaptivity strategies and error estimates; however, selecting solver and preconditioning is
vital in order to get a manageable execution time for implicit problems. Compressible flow and transport problems FVM and
DG are desirable when discrete conservation and shock-capturing capability are required.

Solver and preconditioner design is the key element in terms of performance: AMG and geometric multigrid is extremely
effective for elliptic and diffusion-dominated operators, while block and physics-aware preconditioners are obligatory in the
case of coupled multiphysics systems. Matrix-free evaluations and operator-based preconditioners are advantageous in the
case of very high order discretizations in order to save memory and to utilize the cache better.

Adaptive methods (h-, p-, and hp-refinement) are responsible for great computational savings in cases that display localized
features. But, adaptivity brings in the complexities of data management and parallel load balancing when the codes have to be
implemented for production. In hyperbolic cases, non-oscillatory reconstructions and limiters are also an essential part of the
process so as to prevent Gibbs phenomena near discontinuities. Finally, practical choice of solver is also a matter of context:
for smooth, high accuracy requirements, the disadvantage of spectral/spectral-element solvers, i.e., time steps are
constrained by frequency, is reduced in favour of spectral accuracy: FEM as a choice for more complicated geometry and
multi-level physics, FVM/DG as a choice for conservative transporting and shock problems.

Discussion

The comparative study emphasizes the fact that no numerical method for PDEs exists that is one size fits all. The most
suitable approach is related to the mathematical nature of a particular problem - smoothness, structure as a conservation law,
geometry, and boundary conditions - and to the limitation of a computation (the memory available to hold objects, the desired
turnaround time, and the type of hardware that uses parallel processing, among others).

Accuracy per degree of freedom is a benefit of the spectral and high order solutions in the case that solutions to these
problems are smooth and where the domains can be structured and/or mapped discretizations (Trefethen, 2000; Canute et
al., 2007). However, the global bases used in spectral methods do complicate the problem of dealing with discontinuities and
complex geometries and spectral-element methods to some extent address some of these limitations by combining localized
elements with high-order bases. For practical engineering problems involving irregular boundaries and heterogeneous
materials, finite element methods provide a mature, flexible framework, which includes the capacity to deal with
unstructured meshes, dealing with various boundary conditions, mixed formulas for solving constrained problems, and a
rigorous a-priori and a-posteriori error analysis (Ciarlet, 2002; Brenner and Scott, 2007). The finite volume and
discontinuous Galerkin families are advantageous when local conservation and shock capturing are of the utmost importance,
as is the case for compressible fluid dynamics and transport problems (LeVeque, 2002; Cockburn & Shu, 2001).

Solver infrastructure is centralized. Discretizations lead to algebraic systems for which the conditioning factors have a strong
effect on the computational expense. For elliptic and diffusion operators multigrid approaches (geometric or algebraic) give
good scalable approaches with near-optimal-complexity, multigrid combined as a preconditioner for Krylov methods would
often give good performance for a range of discretizations (Briggs et al., 2000). Problems that are advection-dominated or
non-symmetric but they must also be preconditioned (block preconditions, physical splitting). For high order and DG
discretizations, matrix-free approaches are free from the assembly of large global matrices and are more memory efficient
and allow efficient application of operators in iterative approaches.

Adaptability--in both space and time--arthritis like the moment a CubeSat's close and personal spacecraft activity evolves into
notable advantages of practical nature. A-posteriori error estimators and adaptive mesh refinement focus the resources of the
computer where the calculation is most efficient (maximum decrease in error), such as hp-adaptivity (varying both the mesh
size and the polynomial degree [Schwab, 1998]) is especially powerful for mixed-smoothness solutions but adds a level of
complexity to the implementation. In time dependent problems, the use of adaptive time stepping allows the over-resolution
of the time step over smooth time intervals, and the economical representation of rapid transients.

Algorithms are determined by computing cost efficiency. Explicit algorithms and local DG models are easily scalable to GPUs,
and could constrained by CFL limit time steps which mean that impracticable run times in stiff or diffusion-controlled
problems are inevitable. Implicit solvers have the benefit of relaxing time-step constraints at the expense of the costs of
finding scalable, parallel Search preconditioners. The move towards heterogeneous purpose architectures (CPU + GPU) will
entail the design of hybrid algorithms: matrix-free algorithms, communication-free Krylov solvers, and reside preconditioner
GD one.

Finally, emerging methods related to big data and hybrid methods deserve mentioning. Alternatives that can be used in fast
inference and inverse problems include neural network surrogates and physics-informed neural networks, with stability
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guarantees and interpretabilities being an issue. Learned components (e.g. learned preconditioners or subgrid closures) can
provide an added benefit to classical methods but this needs to be rigorous validated integrated with well validated
discretizations to prevent them from becoming unreliable for high-stake applications.

In summary, the choice of method used should be based on the cumulative evaluation of problem characteristics, accuracy
desired, conservation properties considered and the computational resources available. Solver infrastructure investment and
adaptivity are likely to pay off with higher returns than the marginal payoff in the local discreteness of discretization,
particularly when very large and industrial-strength simulations are to be made.

Conclusion

Numerical methods for partial differential equations constitute a rich and mature field which continues to change through the
process of evolving around new application needs and new computational architectures. This article presented a review of
theoretical foundations, methodological systems and empirical comparison of a representative sample of numerical methods
(finite difference, finite element, finite volume, spectral and discontinuous Galerkin) for canonical elliptic, parabolic and
hyperbolic model problems. The major conclusions are based on both classical theory and modern computational experience.

First, the choice of method is problem dependent. For smooth solutions on simple domains where extreme accuracy is needed
in representations of on an order of the number of degrees of freedom, spectral and spectral-element methods offer an
unmatched accuracy for the number of degrees of freedom and sometimes exponential convergence. However, because of
their global nature they are of lower applicability for complex geometries or solutions with discontinuities. On the other hand,
finite element methods offer a flexible and well understood variational formulation with unstructured meshes, variable
coefficients, various boundary values and multiphysics coupling and the FEM has a good theory regarding apriori and
aposteriori error estimates as well as for adaptivity and mixed FEA. Finite volume and DG approaches are suitable for
situations where local conservative and robust shock treatment is of critical importance such as in many fluid dynamics
problems due to their flux high formulation and compatibility with Riemann solvers and limiters.

Second, solver and preconditioner design can be far more critical than local discretization order to attain practical
performance. Elliptic problems, diffusion problems lead to large, sparse and ill-conditioned linear systems Multigrid
(Geometric and Algebraic) Scalable solvers with near-optimal complexity Multigrid should be a central part of any production
grade PDE code. Krylov-subspace methods combined with effective preconditioners (AMG, ILU, block preconditioner) cannot
be replaced, however. For coupled and non-symmetric systems, physics-aware block preconditioners combined with domain
decomposition could cut down drastically the number of iterations and wall-clock time.

Third, of an individual harnessing the power of adaptivity - space and time. A-posteriori error estimation and automated
mesh refinement (h-, p-, hp-adaptivity) makes it possible to concentrate the computational effort where the solution has
steep gradients or has small-scale structures. For transient problems the combination of adaptive time-stepping based on
local truncation error estimates and spatial adaptivity is effective. While the adaptivity procedure adds some complexity in
implementation and data management support, particularly in the case of dynamic load balancing on parallel machines, the
gain in degrees-of-freedom savings and run-time is often very significant.

Fourth, numerical stability and numerical conservation is important. For problems with hyperbolic and advection-dominated
schemes this includes treatment of the problems by upwinding and limiters and TVD properties and entropy stable schemes
are the key to avoid nonphysical oscillations and preserve physical meaningful weak solutions. For the long-time integration
of conservative systems, structure-preserving discretizations (symplectic integrators, mimetic methods) are able to preserve
qualitative features and invariants which do not hold when generic schemes are used.

Fifth, hardware-conscious algorithms are necessary in more and more cases. Matrix-free operator evaluation, data locality
optimizations, communication avoiding Krylov methods and GPU-accelerated kernels are of significance for exploiting
modern heterogeneous architectures. The algorithm-hardware co-design is now a practical requirement to large scale
simulations; a good utilization of the memory bandwidth and reduction of global communication are often as important for
the computer algorithm as the arithmetic complexity is.

Sixth, hybrid and data-driven approaches become the complements, and are yet not the substitutes of the classical solvers.
Physicsinformed neural networks, reduced-order modeling and learned preconditioners have been shown to have niche
applications, e.g. fast scalable surrogates to design optimization or solving inverse problems, but must be protected, stable
and have quantified uncertainty in order to generalize with respect to the parameter regime.

Seventh, there is the need for software engineering and reproducibility. High fidelity simulations of the partial differential
equations (PDE) are complicated software packages combining discretization, solvers, meshes, I/O and parallelization. Using
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community-tested libraries (PETSc, Trilinos, deal.Il, FEniCS) and documentation for solvers options, mesh generation and a
reproducibility scripts to reduce the time for development and increase the reliability.

Eighth, there are open research challenges. Robust and scalable solvers for strongly-coupled multiphysics systems, reliable
hp-adaptivity on unstructured meshes in 3D, provably stable and accurate hybrid data-driven/classical solvers, uncertainty
quantification with adaptivity integrated with pp-adaptivity and solver techniques optimized for emerging hardware are still
fertile areas for research. Attending to such challenges will help increase the number and veracity of numerical simulations in
science and engineering.

In conclusion, there is a fine artistry involved when Solving numerical PDEs having mathematical rigor, algorithmic
engineering skills and great software implementation. Practitioners must align solutions to problem properties, make
investments in solver powering and adaptive and work in hardware trends and verification/validation. With these priorities
numerical methods will continue to make predictive simulation and discovery across disciplines a reality.

Recommendations

1. Discretization Based on Problem Class Spectral Smooth/simple domains FEM Complex geometry FVM/DG
Conservation/Shock

2.  Always check implementations in terms of manufactured solutions and benchmark problem.

3. Prematurely invest in the research of solver and preconditioner (AMG / multigrid, block preconditioners).
4. Use the ability of spatial and temporal refinement to efficiently concentrate resolution

5.  Spend less memory for very high order discretizations - prefer matrix free applications.

6. Implicit limiter and entropy stable fluxes for hyperbolic problems with discontinuous solutions.

7. profile code to locate the hotspots (assembly, solver) and optimise first (assembly, solver) 1.

8. Consider the IMEX schemes for problems with mixed stiffness for a balance between stability and cost.

9. ne Think: community libraries (PETSc, Trilinos, deal.ll, FEniCS) are solid solvers and have a high level of parallel
scalability.

10. Cross-check (data-driven components) to classical methodologies Check (data-driven components) to classical
methods with uncertainty quantification Include uncertainty quantification Check classical methodologies to (data-
driven components) Check classical methods with (data-driven components)

11.  Design in reproducibility Design of document meshes, solver parameters, and hardware.
12. Balance between tune solver tolerances and preconditioner set-up cost and cost per iteration: production runs.
13. Explore GPU for the explicit and matrix-free kernels; work on preconditioner support on target hardware.

14. Conservation properties Multiphysics Multiphysics describe components that have common numerical conservation
properties that need to be conserved.

15. Have strict testing (unit, regression testing) on discretization and solver modules.
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