

Water Resource Management Using Engineering Innovations

Sikandar Ali Bhatti¹

¹Department of Photonics Engineering, University de Lyon, Laboratory Hubert Curien, France,

Email: sikandarbhatti2367@gmail.com

ARTICLE INFO

ABSTRACT

Received:

March 08, 2025

Revised:

April 02, 2025

Accepted:

April 27, 2025

Available Online:

May 07, 2025

Keywords:

water resource management, engineering innovations, desalination, waste water treatment, smart water systems, sustainable water infrastructure, integrated water management.

Water aid control is important a good way to meet developing worldwide needs and in mitigating water shortage to make certain the sustainability of the environment. Innovations in engineering this can be in layout of infrastructure, real-time tracking and remedy technologies, that are key in optimizing availability, excellent and certainly distribution of water. This article presents a detailed review on engineering methods in water harvesting, storage, distribution, treatment and reuse. It has been proven that through the individual case studies and the provisional data that incorporated solutions work effectively in resolving the multi-faceted issues regarding water. The results of this study combine the theoretical foundations, methodological frameworks and the outcomes on performance to inform policy makers, engineers and other stakeholders about initiatives promoting water resilience.

Corresponding Author:

sikandarbhatti2367@gmail.com

Introduction

Water is basic for life, economic action and ecosystem health. Despite representing a very large proportion of the earth's total water, only a small portion of the world's water is available as fresh water suitable for human consumption, agricultural and industrial uses (Gleick, 1993). Increasing population, urbanization, industrialization and climate change are exacerbating water scarcity and water quality worldwide (UN-Water, 2020). Effective water resource management is hence a priority of sustainable development and human well-being. Engineering innovations have become essential in solving water challenges through innovations in water supply reliability, water use efficiency and restoration of degraded water systems.

Traditionally, water resource management was based on infrastructure such as dams, canals and aqueducts that store and distribute water on a large scale. While there are often critical historical roles associated with these structures there were often also costs to the environment and to society, such as habitat disruption, displacement of communities, and alterations in natural hydrological regimes (World Commission on Dams, 2000). Contemporary demanding situations call for and require extra than simply massive infrastructure Engineering answers which can be incorporated and adaptive Will contain ecological, social and financial dimensions.

Recent civil and environmental engineering advances are converting the manner wherein water sources are managed. Technologies like desalination, superior wastewater remedy, clever water grids, faraway sensing and occasional effect development (LID) practices enhance the deliver and first-class of water. Desalination technology just like the opposite osmosis have improved water materials in arid areas, aleven though they're high-priced for electricity desires and their brine

desires to be managed (Elimelech & Phillip, 2011). Reuse and recycling of wastewater in engineered remedy facilities, offer opportunity components and relieve the stress on freshwater components (Asano & Levine, 1996).

Smart water structures, made feasible with the aid of using the Internet of Things (IoT), sensors and records analytics permit real-time monitoring, leak detection and distribution optimization taking into consideration a vast discount of water losses in city deliver networks (Akyol et al., 2016). Remote sensing and geographic facts structures (GIS) permit the mapping and assessment of water sources over a big vicinity and offer statistics for decision-making in basins and watersheds (Rodriguez-Iturbe & Rinaldo, 2001). These improvements accompany proactive control primarily based totally on converting environmental and call for conditions. In agricultural sectors-which suggests the best percentage of customers of worldwide freshwaters-particularly, precision irrigation technology, soil moisture sensors, and managed transport structures favour green water use (Fereres & Soriano, 2007). Green engineering practices like built wetlands and bioretention structures are those who mimic hydrology inside the herbal surroundings to deal with stormwater as a part of a approach to mitigate flooding and as a result beautify atmosphere services (Mitsch & Gosselink, 2015).

Most important, the Performance of weather variables in terms of the appearance of water aren't flawlessly predictable. Integrated Water Resources Management (IWRM) commodity the framework of water sources control that takes a holistic approach, incorporating floor water, groundwater, land use and socio-financial drivers in making plans and control processes (Global Water Partnership, 2000). Engineering innovations also work well in conjunction with IWRM by lending the physical and technological resources for the implementation of integrated strategies.

Despite development in technology, there are still some barriers. High energy costs of some technologies, institutional barriers, scattered governance and financial constraints restrain pervasive adoption of the engineering solutions, especially in developing regions (UN Water Development Report, 2018). Addressing such barriers requires collaboration across sectors, engineers, policy makers, communities, scientists, etc. in this article we look at the role engineering innovations play in the sustainable management of water resources. It combines the theoretical background, reviews on topic literature, methodological sections, analyzes the results of performance and provides policy and practice implications. The end goal is to possess a complete knowledge of how engineered solutions can be used to make water resources more resilient to the pressures that are impacting on an ever-growing scale.

Water resource management is important due to the fact that water is essential to human survival, ecosystem health, production of food and economic development. As pressures such as population growth, climate change and pollution increase the traditional sources of water supply are being stressed more and more, innovative sources of engineering solutions have become critical. The good use of technological innovations increases water supply, increases quality, decreases losses and supports sustainable use. By using technologies like desalination, wastewater recycling, smart sensing and precision irrigation, societies can make the most by optimizing current water resources and diversifying supply portfolios. The main aims of this article are to (i) review the role of engineering innovations in meeting the water challenges of the twenty-first century, (ii) focus on and synthesize the literature and empirical data on key technological solutions, (iii) present possible methods for the assessment of engineered solutions to water challenges, and (iv) present and discuss data for performance outcomes. By combining theoretical, empirical, and case study knowledge, the article is intended to make researchers, practitioners, and policy makers aware of the strategies for the success of sustainable management of water resources through engineering innovations.

Literature Review

The relevant areas of literature on water resource management and engineering innovations include hydrology, civil and environmental engineering, optimization of systems, and sustainability science. Early basic studies were focused on the hydrologic cycle and quantitative knowledge of water availability, resulting in classical reservoir design and allocation models (Chow, Maidment, & Mays, 1988). The rise of Integrated Water Resources Management (IWRM) as a dominant paradigm acknowledged the importance of coordinated management of surface water, ground water, land use and ecosystems and led to interdisciplinary research that crossed the divide between the social and biophysical sciences and between engineering (Global Water Partnership, 2000). Research on engineered water systems grew to include technologies for potable water treatment, reuse of wastewater systems, and supply system optimization. Asano and Levine (1996) laid critical ground work on wastewater reclamation and re-use, by demonstrating the use of advanced treatment processes for high quality waters for non-potable and potable uses, as well as reducing the load of pollutants. Elimelech and Phillip (2011) reviewed desalination technologies, focusing more on the topics of reverse osmosis, describing efficiency improvements, controlling fouling, and energy recovery as areas of innovation. In the domain of urban water supply, the problem of non-revenue water was well documented by scholars and the importance of smart meters, leak detecting systems and decision support tools in limiting losses and improving reliability was highlighted (Akyol et al., 2016). Remote sensing and GIS literatures have been developed

to make up basin-scale evaluations of water availability, monitoring snowpack and estimating evapotranspiration for advancing resource assessments and early warning of drought (Rodriguez-Iturbe & Rinaldo, 2001). Agricultural water management research has centered on precision irrigation systems, drip and micro-sprinkler technologies, soil moisture sensing and crop water productivity parameters for higher irrigation efficiency (Fereres & Soriano, 2007). Green stormwater infrastructure and low-impact development (LID) literature plays a part in sustainable urban water management, as these cause engineered systems to integrate with ecological design to manage runoff and improve water quality while also aiding groundwater recharge (Mitsch & Gosselink, 2015). Operational research and optimization studies have afforded frameworks for reservoir operation, allocation of supply under uncertainty, as well as conjunctive use of surface and ground waters (Loucks & van Beek, 2017). Climate impact studies have included hydrologic models with climate projections as part of considering how water availability may change in the future and determining how infrastructure can be made resilient (IPCC, 2022). Institutional and governance research in water resources have stressed on the importance of regulatory frameworks, stakeholder participation and economic instruments such as water pricing and tradable rights in supporting sustainable engineering solutions (Saleth and Dinar, 2004). Technological diffusion studies indicate that adoption of innovation technologies in water measures the considerations of cost-benefit functions, policy incentives and institutional capacity (Rogers, 2003). Therefore, across these literatures a consensus has emerged that the components of sustainable water resource management involve a combination of engineered technology, integrated planning, adaptive governance and stakeholder engagement, which would cater to competing demands while also safeguarding environmental systems.

Methodology

Methodology used in this article is qualitative, analytical, and comparative, with the intention of synthesizing theory and empirical evidence and case data on engineering innovations for water resource management. The approach consists of several stages, which are interlinked.

First, the research is based on the systematic synthesis of the literature with the aim of identifying, categorizing and evaluating existing research in the field of engineered water solutions. A structured search was carried out in academic databases (Web of Science, Scopus, Google Scholar) by using keywords such as "water resource management", "engineering innovations", "desalination", "wastewater reuse", "smart water systems" and "integrated water planning". Selected literature were screened for relevancy for using a number of criteria: first is empirical support, second is technological focus and applicability to sustainable management.

Second, the engineering innovations have been sorted according to a set of themes: (i) water supply (eg. desalination); (ii) water treatment and reuse (eg. membranes, advanced oxidation); (iii) systems improvements in the distribution system (eg. smart grids, leak detectors); (iv) agricultural water management system (eg. precision irrigation); (v) stormwater and urban runoff prevention (eg. LID and green infrastructure). This classification is used for the systematic analysis and comparison.

Third, case studies that provide examples of successful implementation of engineering innovations were chosen using purposive sampling. Cases were taken from both a developed and a developing context to represent a diversity of technological and socio-economic conditions. Key variables that were extracted were types of technology used, performance (energy savings, water savings, pollution reduction), economic (costs and savings), and enabling institutional or policy factors.

Fourth, life cycle assessment (LCA) framework(s) were reviewed for technologies for which data were available to ease comparative environmental impact analysis. For example, in the area of desalination and wastewater reuse, existing peer-reviewed LCA studies provided data on greenhouse gas emissions and energy use per unit volume of treated water and therefore similar comparative discussion can be held.

Fifth, comparative quantitative analysis was done with the aggregated data from the case reports and other secondary sources. Final results -Metrics such as energy intensity (MJ/m³), water recovery efficiency (%), non-revenue water reductions (%), cost per m³ of water supplied were tabulated and analysed in order to look for patterns and benchmark performance and to incorporate into the analysisEffects of policy and governance analysis -The sixth stage introduced policy and governance analysis to understand the influence of institutional settings and regulatory environments and economic incentives on adoption and impact of engineering innovations. This involved synthesis of material from that of governance, MSS and policy studies, linking the outcomes of technology with enablers such as subsidies, pricing policies and capacity building.

Finally, the methodology consists of a critical synthesis between performance technology and results of sustainability. This step involves looking at the role engineering innovations play in contributing to much wider sustainability goals (eg for SDG 6 on clean water and sanitation) and the gaps which require (often complementary) governance and behavioural interventions.

Limitations of the methodology relate to the fact that the methodology relies on published data that may be of different quality and comparability, and that it can be difficult to isolate the technological effects from other factors in the context of their use, such as the support of institutions. However, the multi-step approach yields an extensive analytical foundation for understanding the water resource management by engineered solutions.

Data Analysis and Discussion

This section synthesizes data of performance, efficiency and outcomes of engineering innovations in water resource management. Data is based on case studies, life cycle assessment and comparative study across technology.

Table 1 – Comparative Performance of Water Supply Technologies

Technology		Water Recovery (%)	Energy (kWh/m ³)	Intensity	Approx. Cost (\$/m ³)	Notes
Reverse Desalination	Osmosis	45-60	3.0-6.0	0.5-2.0		Widely used; salinity affects cost
Wastewater (Membrane + UV)	Reuse	80-95	1.5-4.0	0.3-1.5		High quality reuse; energy depends on membrane

Table 2 – Water Distribution and Agricultural Efficiency Metrics

Intervention		Water Loss Reduction (%)	Water Use Efficiency (%)	Key Outcome
Smart Metering & Leak Detection		20-40	—	Reduced non-revenue water
Precision Irrigation (Drip)		30-50	—	Increased crop water productivity
Soil Moisture Sensors		10-2	—	Optimized irrigation timing

Desalination and Water Supply Augmentation

Reverse osmosis (RO) desalination is still the most prominent technology in large-scale manufacture of potable water from seawater and brackish water. There has been improvement in energy efficiency of RO systems because of improvements in membrane materials and energy recovery devices (Elimelech & Phillip, 2011). Case studies in the Middle East and Australia indicate that water recovery rates are typically in the region of 50% with energy intensities of 3 - 6 kWh/cubic meter; the cost per cubic meter varies considerably depending on the scale, cost of energy and the salinity of the source. While RO offers one way to provide a drought-proof supply, brine disposal and energy consumption are all very significant issues.

Wastewater reuse systems that use a combination of membrane filtration and disinfection (e.g. by UV, chlorination) have high water recovery and generate water that can be used for irrigation, industrial use or indirect potable reuse (with appropriate safeguards). These systems have environmental advantages like lowering the discharge of effluents and the utilization of freshwater sources. Life cycle analyses indicate that wastewater reuse can be less total greenhouse gas emitting than desalination when alternative freshwater withdrawals are avoided and credit of nutrient removal is considered, which is especially common in urban environments. Rainwater harvesting, when considered and located decentrally, is less energy consuming however its effect varies with site significantly and seasonally. Harvesting on the building level in combination with storage and simple treatment can help to meet non-potable demands at low cost.

Smart Water System for distribution system

Water losses from leakage, mistakes and used by unauthorised consumers (sometimes referred to as non-revenue water) remain a major problem around urban distribution networks. Smart metering, sensors and real time monitoring platforms allow utilities more ability to identify where leaks, pressure anomalies and inefficiencies are occurring. Studies in European and North American cities find 20 - 40 percent reductions in losses after the deployment of smart leak detection and pressure management systems. Simple interventions such as these, aimed at conserving water, also conserve energy, used to pump and treat it. Coupled by advanced analytics and predictive maintenance, smart water systems make water systems more resilient and reliable in terms of service.

Water Use for Agriculture Optimization

Agriculture is responsible for more than two-thirds of the freshwater withdrawals around the world. Precision irrigation technologies (like drip systems and soil moisture sensors are very useful in improving water use efficiency). Drip irrigation is able to increase the water productivity of a crop by 30-50% as compared to traditional flood irrigation method and quality systems such as soil moisture sensors which help to better schedule irrigation at precise times to avoid excessive water use and promote better crop yield. Water use efficiency metrics indicate that overall volume withdrawn is reduced under precision systems for same or improved crop output which is directly related to sustainable agricultural water management. The adoption of these technologies is determined by factors such as upfront cost, technical know-how and access to funds.

Integration and Sustainability Symptoms

Evaluation of engineering innovations in terms of models of life cycle analysis indicates that the latter is generally more environmentally intensive than when it is combined with supply augmentation, reuse, and efficiency. For instance, the integration of wastewater reuse with decentralized renewable energy sources can achieve net reductions in emissions of greenhouse gas and/or reduce reliance on fossil fuels. Similarly, smart distribution technologies help in minimizing the losses and energy consumption thus maximizing the benefits of sustainability within existing supply systems.

Beyond environmental measures, in terms of economic performance, a number of trends that demonstrate that certain innovations (for example, smart systems, precision irrigation) may require initial investment, but that, due to the decrease in the use of energy or water, they may also result in operational savings in the long term.

Discussion

Engineering improvements have proven real-time outcomes in higher control of water assets in phrases of improved availability, nice and performance. Desalination and the reuse of wastewater expand the variety of alternatives for water resources specifically in water scarce regions, even as clever distribution structures and precision farming limit losses and maximize intake. When engineered answers are included into complete water control schemes, those are capable of without delay make contributions to a couple of sustainability goal which includes weather mitigation, financial resilience and equitable get entry to.

But the effectiveness of technology relies upon at the institutional/governance contexts as well. For example, implementation of clever water structures wishes regulatory support, finance mechanisms and technical potential in utilities. Similarly, the improvement of growing use of precision irrigation technology can be confined through value boundaries and shortage of extension offerings in growing agricultural regions.

Trade-offs within the location of environmental worries additionally need to be evaluated carefully. The technique of desalination, whilst precious, is strength extensive and, with out an integration of smooth strength, can also additionally in reality counteract with the aid of using changing strength performance movements through elevating greenhouse fueloline emissions. Brine disposal troubles want to be addressed to allow marine effect to be avoided. Such lifestyles cycle evaluation contributes to creating those trade-offs clean and to make sustainable deployment clean.

Equity issues of the best order are assumed. Engineering answers with capital-extensive necessities can disproportionately gain wealthier groups if strategies aren't installed vicinity to the subsidised get admission to or the fashions of infrastructure sharing. Likewise, smallholder farmers may be left with out get entry to to precision irrigation technology within the absence of unique programs.

Discipline synergy to maximise the impact of engineering improvements. Hydrologists, engineers, economists, and social scientists deliver complementary views to such troubles to make sure that technical answers are perfect to all and sundry and environmentally sound, similarly to being economically viable. Public engagement and participatory making plans are extraordinarily essential while infrastructure tasks are going to have an effect on groups at once. Finally, there are each possibilities and demanding situations that virtual transformation provides. Whilst IoT and statistics analytics can purpose at greater powerful tracking and optimisation, cybersecurity, records governance and virtual divides are many of the new problems and worries that do require sturdy requirements with guidelines making sure inclusion.

Conclusion

Water useful resource control is at a vital point. Global pressures including populace growth, climatic variability and urbanization are setting stress on conventional deliver-centric fashions. Engineering improvements provide imperative way that assist reframe water structures toward sustainability and resiliency and performance.

This article has provided that engineering answers inclusive of desalination, wastewater reuse, clever water distribution, precision irrigation and incorporated making plans frameworks; could make a considerable contribution to enhance the supply of water and decrease environmental impacts. Desalination technology specifically opposite osmosis with electricity healing offer a steady deliver of water for arid desolate tract regions and wastewater reuse structures convert waste water into precious reassets of water. Smart water structures assist to lessen distribution losses and optimise software operations. Precision irrigation and soil moisture sensing improves agricultural water productivity - the maximum good sized sectoral use within the world.

However, technological answers aren't answers in and of themselves. They want to be embedded in wider frameworks for the included control of water sources and hyperlink the ability and skills of engineering with governance, monetary incentives and network desires. Policy instruments: pricings & subsidies for sustainability technology, guidelines requiring reuse or performance requirements are in particular excellent approaches for scaling up improvements. existence cycle and sustainability checks display engineered answers frequently have internet environmental gain specially if observed with the aid of using renewable electricity reassets. However, trade-offs nonetheless exist: the electricity intake via way of means of desalination plant life and the incapacity to discard salty wastes, the fee of imposing smart community infrastructure, and the societal effects of the era diffusion.

Another determinant of achievement is institutional capability. Utilities which have suitable technical muscle, economic stability, and regulatory readability are greater in a role to take benefit of engineering improvements. In contrast, a patchy configuration of governance and insufficiently funded establishments receives within the way. Sustainable water control calls for fairness in dealing with its middle enterprise via ability constructing, centered financing, and the use of private-described partnerships that could bridge the gaps and boom adoption. Underserved populations and affordability must be invested in engineering. Technologies that make matters greater green have to now no longer make disparities worse, however regulations have to be capable of cross hand in hand with improvements to make sure that it is dispensed to as many human beings as possible.

Cross-disciplinary collaboration enables with each the know-how and implementation of those. Engineers for the technical layout and optimization, hydrologists, ecologists and economists in addition to social scientists with their insights into the dynamics within the surroundings and financial system and social acceptance. Such collaborations are useful in making sure answers which have been engineered are sturdy, contextualized and who additionally follow broader desires being sustainable.

Looking closer to the destiny, there are some of instructions for studies and exercise that benefit attention. First, synthetic intelligence integration, gadget mastering and sensor community integration is a promising generation for prediction of water control and selection making below unsure weather situations in real-time. Second, extra leaps in membrane & remedy technology can yield greater price-powerful structures. Third, the ideas of round financial system implemented to the water sector - wherein dealt with wastewater and captured rainwater are a part of circulation - can result in a discount in freshwater withdrawals and pressures at the surroundings.

Groundwater and conjunctive use strategies additionally want to be taken into consideration. In many regions, groundwater assets are overexploited and the aquifers require controlled aquifer recharge, tracking and regulation. The availability of improvements in engineering is capable of deal with the subsurface hydrology and recharge to revitalize the aquifers and take in weather extremes.

Policy frameworks want to extradite to facilitate innovation diffusion. Incentives for using renewable electricity reassets within the desalination system, offers on clever infrastructure and marketplace mechanisms on water rights and water buying and selling may be catalytic in bringing transitionitions. International cooperation in assisting generation switch and potential constructing mainly towards growing international locations which can be below acute water stress.

In conclusion, water useful resource control thru engineering improvements offers one road to fixing present day and destiny water aid demanding situations. The proof indicates while the answers to the water disaster are included in more interconnection of technological answers, sound financial incentives and social engagement, water structures are greater resilient, green and sustainable. The shift to water control primarily based totally on engineering exercise is necessary, however additionally possible, gives Stakeholders take the proactive, however holistic view to comprehend environmental stewardship, technological innovation and truthful get right of entry to.

Recommendations

1. Incorporate the life cycle assessment of water technologies, into planning and evaluation of water technologies

2. Promote wastewater reuse as foodway supply in urban and industrial areas;
3. Invest in smart water distribution systems to identify the leaks and maximize operations.
4. Subsidise/support draw adoption of precision irrigation technologies.
5. Promote Renewable energy integration to desalination and treatment plants.
6. Develop policy tools for rewarding efficiency and reuse (e.g. pricing, credits).
7. Promote agency and utility institutional capacity building.
8. Facilitate public-private partnerships in the area of financing water infrastructure.
9. Provide equity in deployment policies and pricing of technology.
10. Promote research for energy efficient treatment and resource recovery systems

References

1. Akyol, B., et al. (2016). Smart water network technologies: A review. *Journal of Water Resources Planning and Management*.
2. Asano, T., & Levine, A. D. (1996). *Wastewater reclamation, recycling, and reuse*. CRC Press.
3. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). *Applied hydrology*. McGraw-Hill.
4. Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. *Science*.
5. Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. *Journal of Experimental Botany*.
6. Geyer, R., Lindner, J., & Stoms, D. (2008). A pilot input-output analysis of remanufacturing. *Journal of Industrial Ecology*.
7. Gleick, P. H. (1993). *Water in crisis*. Oxford University Press.
8. Global Water Partnership. (2000). *Integrated Water Resources Management*.
9. IEA. (2023). *Energy efficiency 2023*. International Energy Agency.
10. IPCC. (2022). *Climate Change 2022: Impacts, Adaptation, and Vulnerability*.
11. ISO 14040. (2006). *Environmental management – Life cycle assessment (ISO 14044)*.
12. Kusiak, A. (2018). Smart manufacturing. *International Journal of Production Research*.
13. Loucks, D. P., & van Beek, E. (2017). *Water resource systems planning and management*. Springer.
14. Mitsch, W. J., & Gosselink, J. G. (2015). *Wetlands*. Wiley.
15. Porter, M. E., & van der Linde, C. (1995). Green and competitive. *Harvard Business Review*.
16. Pigozzo, D. C. A., McAloone, T. C., & Rozenfeld, H. (2013). Environmental sustainability in product development. *Journal of Cleaner Production*.
17. Rogers, E. M. (2003). *Diffusion of innovations*. Free Press.
18. Rodríguez-Iturbe, I., & Rinaldo, A. (2001). *Fractal river basins*. Cambridge University Press.
19. Saleth, R. M., & Dinar, A. (2004). *The institutional economics of water*. World Bank.
20. Sodhi, M. S., & Reimer, M. (2020). Sustainability in operations management. *Production and Operations Management*.
21. UN-Water. (2020). *World Water Development Report 2020*.
22. UNEP. (2005). *Cleaner production strategies*.
23. UNEP. (2021). *Global Environment Outlook 6*.
24. United Nations. (2015). *Transforming our world: The 2030 Agenda*.
25. Vickers, A. (2001). *Handbook of desalination*. CRC Press.
26. Ward, F. A., & Pulido-Velazquez, M. (2008). *Water conservation in irrigation*. Water Resources Research.
27. World Commission on Dams. (2000). *Dams and development*.
28. Zhu, Q., & Sarkis, J. (2006). National environmental policy and firm practices. *International Journal of Production Research*.
29. Zhu, Q., Geng, Y., & Lai, K. H. (2010). Circular economy practices. *Journal of Industrial Ecology*.

2025 by the authors; Journal of Advanced Engineering & Applied Sciences (JAEAS). This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).