

Applied Statistical Modeling for Productivity and Efficiency Analysis in Pakistan's Industrial Firms

Muhammad Haris Aslam¹

¹ Department of Statistics, Bahauddin Zakariya University Multan, Pakistan

Email: harisasm13@gmail.com

ARTICLE INFO

Received:

September 16, 2025

Revised:

October 01, 2025

Accepted:

October 13, 2025

Available Online:

October 28, 2025

Keywords:

Applied statistical modelling, productivity analysis, efficiency analysis, industrial firms, Pakistan, stochastic frontier analysis, panel data.

Corresponding Author:

harisasm13@gmail.com

ABSTRACT

In the industrial companies and more so in the developing economies like in Pakistan, the competitiveness and sustainable growth heavily depend on productivity and efficiency. Over the past few years, applied statistical modeling has become an effective method of analyzing the level of productivity, efficiency differentials, and performance drivers at the firm level. This paper will discuss how statistical models, such as regression analysis, stochastic frontier analysis and panel data techniques, have been used to analyze productivity and efficiency in the industrial sector in Pakistan. On the basis of firm level and sectorial evidence, the study evaluates how statistical modeling can facilitate informed decision-making, benchmarking performance, and policy formulation. The results indicate that statistical applications have a strong capability of offering perspectives about the efficiencies gaps, resource exploitation, and structural limitations on the productivity of industry in Pakistan. The research shows the significant role of analytical methods in order to enhance the performance and competitiveness of industry in the developing economies through the use of data.

Introduction

The concept of productivity and efficiency has been widely known as one of the key determinants of economic growth, competitiveness by industrial industries, and long-term development. In the case of industrial firms, productivity is a measure of the performance of labor, capital and energy inputs in the production of output whereas efficiency is a measure of how far firms fall behind the frontier of the best practise production efficiency. In the developing economies such as Pakistan, increasing productivity and efficiency in industries is necessary to advance export performance, job creation and long term economic growth.

The industrial industry in Pakistan, as an industry that involves the manufacturing, processing, and mass production processes, is of central importance to the economy of the country. Other significant industries that contribute to gross domestic product (GDP), export, and the employment are industries like textiles, cement, chemicals, pharmaceuticals, and food processing. The industry has historically not been very productive in terms of growth and efficiency gap in comparison to regional and international standards in spite of its significance. The performance of industries has been limited in the past by structural inefficiencies, old technologies, energy deficits, and constraint imposed on managers.

At this, applied statistical modeling has become popular as a model of analytic evaluation of productivity and efficiency in firms, industries, and economics. Statistical models would help researchers and policy makers quantify productivity variations, determine sources of inefficiency and determine the effects of firm specific and environmental factors on performance. In contrast to the descriptive analyses, statistical modeling offers hard empirical information on which to base objective performance assessments and policy-making.

The techniques of applied statistical modeling include multiple regression analysis, panel data models, and frontier-based methods, such as stochastic frontier analysis (SFA) and data envelopment analysis (DEA). These techniques will enable researchers to estimate functions of production, determine technical efficiency, and determine the components that comprise productivity growth. Such models find wide application in industrial economics to analyze behavior of firms, adoption of technology and scale efficiency.

In the case of Pakistan, it is especially applicable in the use of statistical modeling to productivity and efficiency analysis. The industrial companies are also working within an environment where there is volatility of the market, energy crisis, regulatory issues and inadequate access to sophisticated technologies. The statistical models will assist in highlighting the influence of these factors on the productivity outcomes and will allow comparative analysis between firms and sectors. Additionally, the growing numbers of firm-level data made available by national survey and financial reports gives opportunities of empirical analysis of a higher level.

Past studies on the industrial sector of Pakistan have analyzed the trends in productivity, the growth of total factor productivity and productivity efficiency differentials, and applied different econometric methods. Nevertheless, there is still a lot of lysis in the literature, and there is a relatively low level of integration of applied statistical modeling and policy-oriented analysis. It is required to have extensive research synthesizing methodological methods and empirically evaluating productivity and efficiency on a strong set of statistical frameworks.

In addition, the situation of globalization and competition has increased the challenge of evidence-based firm and policy-level decision-making. Managers in industries need the tools of analysis to benchmark the performance, the distribution of resources, and the efficiency of operations. Conversely, policymakers require sound empirical information to formulate industrial policies, energy reforms as well as technology-support programs. Analytical modeling has widely been applied to statistical modeling to meet the requirements.

This research paper will add to the body of the existing literature by review of application of statistical modeling methods to analysis of productivity and efficiency in industrial firms in Pakistan systematically. It focuses on the value of econometric and frontier-based models in the determination of performance gaps as well as structural constraints, as well as points to useful implications to managers and policymakers.

The main aim of the research is to conduct an analysis of the level of productivity and efficiency of industrial organizations in Pakistan based on the applied statistical modeling methods. Namely, the research will attempt to assess the potential to estimate firm-level productivity, estimate the technical efficiency, and identify the main determinants of performance with the help of regression-based models, panel data techniques, and stochastic frontier analysis. It also aims at evaluating the efficiency differences across sectors and how firm size, capital-intensive, quality of labor and external constraints affect productivity results. Through the use of the strong statistical measures, the research will seek to present some empirical findings that will be used to support objective performance assessment and benchmarking in the industrial sector of Pakistan.

The research is important because it has a theoretical, empirical, and practical input. Theoretically, it incorporates applied statistical modelling and productivity and efficiency analysis in the context of a developing economy, and builds upon the literature in industrial economics and econometric analysis. The study is an empirical study that offers evidence-based information on gaps in efficiency and drivers of productivity among industrial firms of Pakistan, which is a critical gap in the country-specific research. In practice, the results provide great advice to the industrial managers who would like to enhance the efficiency of their operations and the use of resources. The study can offer policymakers the significance of a data-driven analysis in developing effective industrial and productivity-enhancing policies. The focus on applied statistical modeling makes this research useful in making informed decisions and also towards the overall objective of sustainable industrial development in Pakistan.

Literature Review

The empirical research on productivity and efficiency in industrial firms is not a new development in the sphere of economics and operations research. Applied statistical modeling can be used in developing economies like Pakistan to give a model to assess the firms performance, ascertain inefficiencies, and comprehend issues that influence the productivity of the industries. In this literature review, global and nation-specific studies are critically analyzed to address the productivity and efficiency analysis of the global and Pakistan-specific research, and the applied methods of statistics.

Productivity is a ratio between outputs and inputs in production process. Efficiency and especially technical efficiency is used to determine how efficiently a firm produces relative to the optimal production frontier with the available resources (Farrell, 1957). Economists differentiate technical efficiency, allocative efficiency, and overall economic efficiency and the models of stochastic frontier and data envelopment analysis are often used to measure technical efficiency (Aigner, Lovell, and Schmidt, 1977).

Another method is the stochastic frontier analysis (SFA) that uses both a random error term and inefficiency elements, whereby the firm-specific deviation of the production frontier can be measured, and statistical noise is considered. Conversely, data envelopment analysis (DEA) is a non-parametric model that makes use of a linear programming technique, which compares various inputs and outputs to establish relative efficiency (Charnes, Cooper, and Rhodes, 1978). The two are common when it comes to benchmarking the performance at firm level and determining the best practices.

Applied statistical modeling builds on such methods to include econometric methods like multiple regression, panel data analysis, and generalized method of moments (GMM). Through these models, researchers are able to estimate the determinants of productivity, quantify the returns to scale, and examine the changes in the efficiency over time (Battese and Coelli, 1995). The models may be of the type of regression whereby the impacts of firm characteristics (labor quality, capital intensity and adoption of technology) on productivity outcomes can be achieved.

The use of applied statistical modeling to measure firm productivity and efficiency has been widely used in empirical research in industrialized countries. As an example, Battese and Coelli (1995) used stochastic frontier models to evaluate the technical efficiency of manufacturing companies in Australia, where the sectoral differences are observed and firm-specific influences are mentioned. In the same tandem, Fare et al. (1994) applied DEA to compare efficiency of various sectors of the industrial industries and they showed the application of non-parametric models in multi-input and multi-output production processes.

The recent research has highlighted the combination of the panel data econometrics with the frontier analysis to reflect the time-based productivity variability. As an illustration of this, Kumbhakar and Lovell (2000) applied panel stochastic frontier model to measure the growth in technical efficiency and productivity and decompose productivity change as efficiency change and technological advancement. The determinants of productivity have also been examined by regression-based methods such as capital-labor ratios, energy efficiency, R&D intensity and skills of workforce (Hulten, 2000).

Big data analytics and applied statistical modeling are gradually enhancing the conventional techniques. Regression models that are produced using machine learning, generalized additive models, and Bayesian methods can be used to better predict the performance of firms and also to identify nonlinear productivity patterns (Aigner and Chu, 1968; Varian, 2014). Such methods have been used in developed societies to maximize resource distribution, predict production levels, and measure efficiency in the face of uncertainty.

In developing nations, statistical modeling has been applied to quantify productivity gaps and efficiency differentials, usually when it comes to policy formulation. Research in India, Bangladesh and China indicates that stochastic frontier and DEA models have the potential of identifying substantial technical inefficiencies in manufacturing and agro-industrial sectors (Ali and Seiford, 2002; Coelli et al., 2005). These studies also show regression-based models that indicate that the quality of labor, adoption of technology, and constraints in infrastructure are very vital determinants of productivity.

According to the literature, statistical modeling can measure efficiency as well as determine a policy-relevant intervention in developing economies. As an example, SFA research enables to estimate the efficiency loss because of energy deficiency, regulatory inefficiency or inefficient managerial practices. These are findings which guide government programs in industrial modernization, development of skills and infrastructure development.

The study of productivity and efficiency at the industrial sector in Pakistan has acquired positive momentum in the last twenty years. A number of studies have used stochastic frontier and DEA model to estimate efficiency at the firm level. Indicatively, Nazli and Faridi (2009) examined technical efficiency of the Pakistani textile sector through DEA and revealed that there was great efficiency disparity between firms and regions. On the same note, Khan and Qureshi (2017) used SFA to evaluate the efficiency of manufacturing firms with the results that firm size, energy consumption, and workforce capabilities play a critical role in determining technical efficiency.

The panel data research has considered the trend of productivity growth in the industrial sector of Pakistan. The article by Ahmad and Tariq (2015) performed a panel regression analysis of the growth of total factor productivity (TFP) to indicate that the significant growth is driven by the deepening of capital and the incorporation of technology. According to other studies, managerial practices, scale of operation, and energy efficiency are important in enhancing performance in industries (Shah et al., 2018).

These advances notwithstanding, there are still gaps. Most of the research is devoted to particular industries or particular modeling approaches, and not to the combination of different statistical approaches. Also, the temporal variation, adoption of technology, and heterogeneity of firms are often not accounted using empirical research in the dynamics of efficiency and productivity change. Stable studies are required involving a combination of regression-based modeling techniques, frontier analysis, and panel models to give a holistic view towards the productivity of the Pakistani industry.

The benefits of Applied Statistical Modeling in Pakistan.

There are various benefits of productivity, and efficiency analysis using applied statistical modeling in Pakistan:

- **Objective Measurement:** Models make quantifiable estimates of efficiency that eliminate the use of subjective managerial estimates.
- **Benchmarking and Comparison:** SFA and DEA both enable comparison and benchmarking of firms against best-practice frontiers, identifying those that are performing well and those that are not.
- **Policy Insights:** The results of the modeling indicate structural constraints, which inform specific interventions in the energy, labor, and technology policies.
- **Resource Allocation:** Regression-based and panel data models allow determining the most important drivers of productivity that can be used by firms to optimize resource allocation.
- **Combination of Multiple Factors:** Higher-level models take into consideration multitude of inputs, outputs, and environmental factors that give in-depth performance analyses.

Although the current literature offers meaningful information, it is clear that there are few gaps:

- Inadequate combination of various statistical applications in the Pakistan industrial background.
- Absence of comparative research studies in the sector that assesses productivity of several industries at a time.
- Lack of systematic research on the time-varying efficiency panel research.
- Weak use of superior econometric and machine learning frameworks on productivity forecasting.
- There are not many studies that offer managerial and policy-related conclusions with regard to rigorous statistical modelling.

To fill these gaps, this research uses applied statistical modeling consisting of regression, SFA, and panel data analysis to investigate the aspects of productivity and efficiency in industrial companies of Pakistan, and offer empirical data and recommendations to action.

Methodology

In this research, the quantitative methodology is used to conduct an analysis of the productivity and efficiency in industrial firms in Pakistan through an applied statistical model. Since the industrial processes are not that straightforward and the researcher must analyze several inputs, outputs, and contextual variables, the study will use a mix of stochastic frontier analysis (SFA), regression modeling, and panel data analysis. This is a multi-method strategy that enables strong measurement of technical efficiency, productivity differentials, and factors that diagnose industrial performance.

Research Design

The research design is a cross sectional and panel explanatory research design. The cross-sectional element allows the benchmarking of the efficiency of firms in each sector, whereas the panel data element of the study allows tracing the dynamics of productivity overtime. An explanatory design would be ideal to test causal relationships between the productivity determinants and productivity outcomes in terms of efficiency.

The methodology achieves both the relative efficiency between firms and the impact of firm-specific and environmental variables on productivity by integrating SFA, DEA, and modeling that relies on regression. This hybrid model establishes both descriptive and inferential understanding, which support evidence-based suggestions in the minds of managers and policymakers.

Population and Sampling

The target segment includes the industrial companies based in Pakistan that are engaged in large manufacturing industries, such as textiles, cement, chemicals, pharmaceuticals, food processing, and electronics. These industries were chosen because of their economic significance and the significant contribution to GDP, exports and jobs.

The stratified random sampling method was applied to provide the representation concerning sectors and the sizes of firms (small, medium, and large). Stratification assists in heterogeneity in patterns of productivity and efficiency. A sample of 350 industrial firms was used to gather data of which 300 samples came up with full datasets that could be analyzed and thus a response rate of about 86 was obtained.

Data Collection Methods

Primary Data

Structured questionnaires were used to collect primary data which were administered to senior managers, operations heads and production supervisors. The questionnaire contained the following sections:

Strong demographics (size, industry, ownership, type)

Product consumption (labor, capital, energy, raw materials)

Value-added measures and output production.

Acceptance of technology and process innovations.

Operation issues and management practices.

Firm records and annual reports were also used to cross verify responses to establish the accuracy. Subjective measures on technology use, managerial efficiency, and operational effectiveness were determined on Likert scale.

Secondary Data

The sources of secondary data were:

Pakistan Bureau of Statistics (PBS).

Industrial surveys conducted by the state Bank of Pakistan.

Industrial-based trade associations.

Issued reports and financial statements on an annual basis.

This secondary data was used to give historical production, input-output, and financial measures required in panel analysis as well as stochastic frontier.

Variables and Measurement

Dependent Variable

Productivity and Efficiency: The productivity and efficiency is measured as output per unit input, total factor productivity (TFP), and technical efficiency measures based on stochastic frontier models.

Independent Variables

Firm Size: The size of the firm, in terms of employees or assets.

Capital Intensity: Division between capital stock and labour.

Labor Quality: Education level or index of skills of workforce.

Technology Adoption: The use of the modern machinery, process automation, and digital systems.

Energy Usage: Energy efficiency and unit cost.

Management practices: efficiency in decision making, process optimization and innovation orientation.

Environmental Factors: The regulatory compliance, the market conditions, and the supply chain limitations.

Statistical Modeling and Analysis Techniques.

Regression Analysis

Multiple linear regression was used to approximate the effect of firm specific variables on productivity. The general model is:

Where y is firm productivity, x are explanatory variables (capital, labor, technology), b are coefficients, and E is the error term. Regression diagnostics such as the test of multicollinearity, heteroskedasticity, and tests of normality were conducted.

Stochastic frontier analysis (SFA)

SFA was used to quantify technical efficiency of firms with a distinction of statistical noise and inefficiency. The production function is as follows:

Output is denoted by Y , input vector is denoted by X , random noise is denoted by ϵ , and η is denoted by inefficiency. Efficiency scores (between 0 (completely inefficient) and 1 (fully efficient)) were estimated by maximum likelihood estimation.

Panel Data Analysis

The panel data regression method represented the productivity dynamics across years. Fixed-effects and random-effects models were both run to explain the unobserved heterogeneity between firms. The houseman tests identified the right model. The analysis of panel data also made it possible to break down the growth in productivity in the form of an efficiency change and technological advancement.

Data Analysis Procedure

Descriptive Statistics: To cluster the firm features, input-output data, and distribution in the sector.

Reliability and Validity Tests: Survey based measures were tested using Cronbach alpha and factor analysis.

Regression Modeling: To determine the determinants of productivity and the effect sizes.

SFA Estimation: To estimate scores of technical efficiency and find out efficiency gaps.

Panel Data Analysis: To investigate the dynamic trends and changes in productivity as they change over time.

Triangulation: Findings of SFA, regression, and panel data were triangulated to make sure that findings were consistent.

Ethical Considerations

Respondents were made to participate on a voluntary basis and informed consent was taken and strict confidentiality ensured. All the data were anonymized, and no identifying information is presented during the analysis or reporting.

Methodological Limitations

All dynamic changes in efficiency might not be identified in cross-sectional and panel data.

There can be bias in measurements through self-reporting, but cross-checking eradicates the problem.

Poor accessibility to historical financial information of some small and medium enterprises.

In spite of these shortcomings, the mixed-methodology approach has presented strong empirical data on productivity and efficiency in the industrial sector of Pakistan.

Results and Discussion

This section provides empirical results of the research enlightening on the productivity level, efficiency score, and performance determinants in the industrial companies in Pakistan. The findings are obtained after regression analysis, stochastic frontiers analysis (SFA), and panel data modeling.

Descriptive Statistics

A sample of 300 industrial firms was used covering the main industries, that is textiles (35 percent), cement (20 percent), chemicals (15 percent), pharmaceuticals (10 percent), food processing (12 percent), and electronics (8 percent). The size of the firms was between small (≤ 50 employees) and large (>200 employees), on average it was 145 employees per firm. There was also a lot of capital intensity that indicated the differences in automation and adopting machines.

Descriptive analysis Preliminary descriptive analysis indicated the following:

Mean productivity of labor: 1.82 units of labor product.

Mean capital productivity: 0.95 output in unit of capital.

Mean energy efficiency: 0.74 (ratio of ideal to actual energy consumption)

Impression of technology adoption: 3.4 (out of 5-point Likert scale)

These numbers imply average productivity rates and indicate the area of efficiency enhancement, specifically, energy use and implementation of technologies.

The results of regression analysis are presented below:

To determine the effect of firm specific and environmental factors on productivity, multiple regression was used. It was found that the regression model was statistically significant ($F = 32.6$, $p = 0.001$) and had the power to account 68 percent of variance in productivity ($R^2 = 0.68$).

Table 1: Regression Results for Productivity Determinants

Independent Variable	Coefficient (β)	Std. Error	t-value	p-value
Firm Size	0.154	0.042	3.67	0.000
Capital Intensity	0.278	0.055	5.05	0.000
Labor Quality	0.192	0.048	4.00	0.000
Technology Adoption	0.231	0.053	4.36	0.000
Energy Efficiency	0.169	0.049	3.45	0.001
Management Practices	0.144	0.050	2.88	0.004

Interpretation: The effect of all the independent variables except environmental constraints was positive to generate the effect on the productivity. This positively influenced the use of technology and capital intensity the most, which confirms the importance of new machinery and automation.

Findings of Stochastic Frontier Analysis (SFA).

The technical efficiency (TE) of firms was estimated by using the application of SFA. Its efficiency scores ranged between 0.56 to 0.97 and a mean of 0.78 and this implies that the Pakistani industrial firms are working at an efficiency of 78 percent of its potential efficiency on the average.

Key observations:

Best performance: Large textile and pharmaceutical firms.

Low productivity: Small food processing and cement firms.

The factors that contributed to the efficiency gaps could be attributed to inefficient labour skills and energy inefficiencies, and low technology adoption.

Panel Data Analysis

The panel regression (5 years (2018-2022) demonstrated that there are significant trends:

The productivity growth rate was on average 4.2/a year.

The productivity improvement of firms that had invested in technology and training of employees was 6-8 percentage points.

There was a positive relationship between the use of energy efficiency practices and the efficiency improvements that were achieved after a long period of time ($p < 0.01$).

The panel analysis has demonstrated that certain attributes of firms (capital, labor quality, technology) and environmental attributes (market access, regulation) have a greater role in the productivity dynamics.

Sectoral Comparisons

Textiles: The technology adoption is moderately low with labor being highly productive.

Chemicals and Pharmaceuticals: This is High efficiency, because it is automated and the employees are qualified.

Cement and Food Processing: Moderate efficiency and severe inefficiency of energy.

Electronics: Small sample, but high level of technology use did lead to more than average productivity.

Table 2: Average Technical Efficiency by Sector

Sector	Mean Technical Efficiency (TE)	Standard Deviation
Textiles	0.81	0.09
Cement	0.74	0.10
Chemicals	0.86	0.06
Pharmaceuticals	0.88	0.05
Food Processing	0.71	0.12
Electronics	0.85	0.08

Interpretation: The areas that can be targeted to have interventions include pharmaceuticals and chemicals, food processing, and cement which are the most efficient sectors.

Discussion of Key Findings

Application of technology: The more the firms have recent machinery and automation, the more productivities and efficiency they demonstrate, which is in line with the world (Battese and Coelli, 1995).

Synergy of the capital and Labor: The gain of productivity is conditional on the equal investment in capital and skilled labor. The capital intensity with lack of skilled labor could not bring the best productivity.

Energy Efficiency: The management of energy is one of the important determinants especially in the energy intensive industries such as cement industry and food processing.

Management Practices: Good decision making, optimization in the process management and training helps to ensure firm efficiency, which strengthens the importance of managerial quality.

Environmental Constraints: The negative aspects of environmental factors are regulatory, infrastructural and market constraints that lead to low productivity, which underlines the importance of favorable industrial policies.

The regression, SFA, and panel analysis ensure that the analysis has a wide perspective in determining productivity determinants, technical efficiency, and time dynamics. Such lessons are essential to national industrial policies and the strategies of firms.

Discussion

The results of the current research indicate the strong relevance of applied statistical modelling to comprehend the patterns of productivity and efficiency among the industrial companies of Pakistan. The study has integrated the regression analysis, stochastic frontier analysis (SFA) and panel data analysis to provide an in-depth evaluation of both cross-sectional differences in efficiency and time series productivity.

To begin with, the adoption of technology can be noted as one of the sources of productivity. Companies that incorporate the use of modern machines, processes, and digital systems are more efficient and high in their output. This observation is also in correlation with the international literature where the technology-intensive firms are typically more efficient in terms of technical efficiency and productivity in general (Charnes et al., 1978; Battese and Coelli, 1995). The usage of technology is inequitable in Pakistan. The technologically advanced large firms and export-oriented industries, e.g., pharmaceuticals and chemicals, as opposed to small and medium-sized enterprises (SMEs) in the food processing and cement industry, are based on outdated equipment, which limits the progress in the efficiency of the latter.

Capital intensity and labor quality is also vital. Analysis of regression indicates that productivity is increasing with the increase of capital investment as long as there is sufficient labor skills and process management. This reinforces the idea that there must be a balanced distribution of resource allocation which is a combination of capital and skilled workforce in order to achieve the best productivity. Companies that have invested capital investment, but has low workforce skills usually do not realize equal gains in efficiency.

Another important determinant is energy efficiency especially in the energy-consuming sectors like cement, chemicals, and food processing. Poor energy consumption does not only escalate the cost of operation, but it also compromises the technical efficiency ratings. The energy management in the industrial situation in Pakistan is strategically important as firms that adopt energy efficient technologies and management practices have shown remarkable growth in productivity.

Organizational effectiveness and management practices have a great impact on efficiency. Technical efficiency is enhanced in firms that have a structured planning, optimization of the processes and training of the workforce. This observation is supported by the fact that earlier researchers hold that the quality of the manager and organizational practices is critical in converting inputs to outputs (Ahmad and Tariq, 2015).

Productivity is adversely influenced by environmental and institutional constraints. Efficiency losses are caused by regulatory compliance costs, restrictions to market access and inadequate infrastructures. Although the companies can maximize the internal processes, externalities like power interruptions, congested shipping routes and unreliable supply chains limit realization of the true productivity potentials. This underscores the necessity of favorable government policies and interventions in the sector to improve the performance of industries.

The outcomes of the SFA show that the average efficiency of Pakistani industrial firms is 78 percent of the potential. The sectoral analysis shows significant differences with pharmaceuticals and chemicals taking the leading position in terms of efficiency (0.86-0.88) and food processing and cement following (0.71-0.74). These productivity disparities highlight the prospect of specific interventions of the underperforming areas, including the technological advances, employee training, and energy-saving programs.

The panel data analysis reveals that productivity in industrial sector of Pakistan has a moderate growth ([?]4.2% annually). Those companies that have spent on technology, employee training, and energy efficiency perform better than others, and their growth rates are 6-8. This emphasizes the fact that long-term investments in the resources and efficient management are the key to the long-term productivity improvement.

All in all, the discussion substantiates the fact that applied statistical modeling provides essential information concerning the determinants of productivity and efficiency. Regression models are used to measure the relative significance of the inputs and the managerial variables, SFA is used to determine how efficient is compared to the best practices, and panel data analysis is used to capture the dynamic variation over time. Combining these approaches will allow making decisions on the firm level and the policy making processes to enhance Pakistani industrial competitiveness.

Conclusively, applied statistical modeling does not only help to discover the current levels of productivity and areas of weaknesses but it also offers effective recommendations on how to enhance the performance of industries. The adoption of technology, the development of skills within the workforce, energy resource management and encouraging policies can dramatically improve the productivity of the firms, as the policymakers can effectively establish specific intervention in order to boost the industry of Pakistan.

Conclusion

This paper has reviewed the use of applied statistical model in the analysis of productivity and efficiency of industrial firms in Pakistan. The study allowed making a comprehensive evaluation of technical efficiency, drivers of productivity, and sectoral performance variation through a blend of regression analysis, stochastic frontier analysis (SFA), and panel data. The implications of the findings to the industrial managers, policymakers and researchers interested in improving the performance and competitiveness of operations within the Pakistani industrial sector are high.

The average technical efficiency (TE) score of 0.78 means that, on average, the industrial firms in Pakistan perform at 78 percent of their potential capacity, which still leaves much room to be improved. The efficiency gaps are specifically high in the energy-intensive and technology-intensive less efficient sectors, which include cement and food processing. Conversely, companies in the chemicals and pharmaceutical sectors are much more efficient since they are automated, have a skilled workforce, and have optimized managerial strategies. These industrial inequalities demonstrate the necessity of industry-focused interventions that would respond to industry-related limitations and take advantage of best practices.

The technology adoption turned out to be the most relevant predictor of productivity. Companies that incorporated contemporary machines, automation and computer technologies had greater volume production and technical efficiency. This observation strengthens the international agreement that modernisation in technologies is essential to the productivity of the industry, particularly in the developing economies where the performance of most industries tends to be constrained by conservative practices. The larger and export-oriented firms have been more aggressive in embracing technology in Pakistan where smaller firms tend to be left behind especially in finances and access to superior machinery.

It was also shown in the study that capital intensity and labor quality are key issues to productivity. Companies having a balanced ratio of capital expenditure and skilled force perform better. The regression analysis confirmed that the two factors have positive correlation with productivity and the coefficients of the capital intensity and technology adoption were the largest. These findings indicate that the allocation of the resources, both in terms of money and development of human capital, should be effective to enhance efficiency.

The issue of energy efficiency is crucial especially in industries that would use large amounts of energy. The inefficient use of energy does not only increase the production costs but also decreases the technical efficiency scores. The researchers concluded that companies with energy management policies and energy efficient technologies recorded significant efficiency benefits. It is here that the strategic nature of the energy policies, both at the firm and governmental level, come in to boost the productivity of the industrial sector.

Also of great importance are management practices and organization capabilities. Companies that have well-organized planning, streamlines, training and systems that track their performance are more efficient. This states the importance of quality of management in converting technological and capital investments into actual productivity gains. Capacity-building procedures and managerial training should however be promoted by policymakers and the industries associations so as to reinforce the performance of the operations.

Environmental and institutional constraint was also observed to be a major hindrance to productivity in the study. Regulatory obstacles, infrastructure congestions, disjointed supply chains, as well as limited market access, diminish efficiency in spite of optimizations at the internal firm-levels. All these problems should be tackled by concerted actions of governmental bodies, business organizations and companies to enhance the industrial infrastructure, simplify the regulations and better access to markets and financial sources.

The panel data analysis showed dynamic patterns of productivity that were reflecting moderate growth of about 4.2 per year in the industrial and sector. Companies that made investments in technology and training of staff, energy efficiency recorded higher growth (6-8%) indicating that proactive investments in resources and capabilities are associated with the long-term increase in productivity. This highlights the need to have strategic plan and follow-up on this plan to keep the gains of efficiency in the long run.

The applied statistical modeling was a sound and efficient model that could be used to determine productivity and efficiency. The relative importance of firm-specific and environmental factors were measured by regression analysis, the relative efficiency and benchmarking were reflected through SFA, and the temporal dynamics were reflected with the help of the panel data analysis. It is a comprehensive method that has both theoretical and practical strengths in that it presents empirical data, benchmarking tools and policy advice.

Policy-wise, the proposed study shows that there is a need to have specific interventions to fill in the gaps in efficiency. The initiatives run by the government to encourage the use of technology, development of the workforce, energy efficiency, and improvement of infrastructure can boost the performance of industries to a considerable extent. Also, by offering incentives and assistance to the SMEs to avail access to modern machinery, training schemes, and financing schemes will help in minimizing the differences in productivity among the firm sizes and sectors.

The productive potential of Pakistani industrial companies is quite vast, with the average efficiency level of 78%.

The strongest positive determinants of productivity are the use of technology, balance of capital and labor and managerial practices.

Regulatory/environmental factors and energy efficiency have a great impact on the performance of a firm.

The efficiency of sectors is different, with pharmaceuticals and chemicals doing better than cement and food processing.

An innovative statistical modeling (regression, SFA, and panel data) gives the wholesome framework of assessing the productivity, detecting inefficiencies, and policy.

The paper finds that the improvement of productivity and efficiency of industrial organizations in Pakistan demands a well-rounded strategy, which involves modernization of technology, development of human capital, and energy conservation and enabling policies. Through applied statistical modeling, companies are able to make evidence based decisions, compare themselves with best practice and to optimize resource use. These insights can guide policymakers to come up with specific interventions which can enhance the competitiveness of the industrial sector, sustainable growth and national economic development. Finally, the application of statistical modeling also helps to detect the existing gaps in its efficiency as well as offers practical recommendations to enhance productivity in the long term, making industrial companies of Pakistan very competitive in the context of an ever-globalized economy.

Recommendations

- Going by the empirical results and discussion, it is suggested that the industrial managers, firms, and policymakers in Pakistan should adopt the following recommendations:
- Facilitate the use of technology:
- Invest in new machinery, automation and computer devices to increase productivity and technical efficiency.
- Develop Workforce Skills:
- Introduce training programs to enhance the labor quality, the technical skills and process management skills.
- Enhance Energy Efficiency:
- Implement energy-efficient technologies and administration to cut on the expenses and enhance performance.
- Enhancement of Management Practices:
- Put emphasis on systematic planning, performance tracking, as well as optimization of processes to convert investments to productivity.
- Promote Compromised Capital and Labor Investment:
- Make sure that the capital investments should be supplemented with the skilled human resources so that they could be maximized.
- overcome Sector-Specific Constraints:
- Guiding toward the back of the market especially in food processing and cement to close the efficiency gaps.
- Technology Access: Support SMEs:
- Grant subsidies, low interest loans and common technology platforms so that small firms can embrace modern processes.
- The enhancement of Industrial Infrastructure:
- Make investments in transport, logistics, energy, and communication infrastructures in order to eliminate environmental and institutional bottlenecks.
- Introduce Benchmarking Practices:
- Apply SFA and DEA to make comparisons of firms to best-practice frontiers and see improvement areas.
- Develop Evidence-Based Industrial Policies:
- Use applied statistical modeling outcomes to develop specific interventions to make them more productive and competitive in the long-term perspective.

References

1. Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. *Journal of Econometrics*, 6(1), 21–37.
2. Aigner, D., & Chu, S. F. (1968). On estimating the industry production function. *American Economic Review*, 58(4), 826–839.
3. Ahmad, N., & Tariq, M. (2015). Total factor productivity and growth in Pakistan's manufacturing sector: A panel data approach. *Pakistan Economic and Social Review*, 53(1), 1–20.
4. Ali, M. M., & Seiford, L. M. (2002). The mathematical programming approach to efficiency analysis. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), *The Measurement of Productive Efficiency* (pp. 120–158). Oxford University Press.
5. Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. *Empirical Economics*, 20(2), 325–332.
6. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. *European Journal of Operational Research*, 2(6), 429–444.
7. Coelli, T., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). *An Introduction to Efficiency and Productivity Analysis* (2nd ed.). Springer.

8. Färe, R., Grosskopf, S., Lovell, C. A. K., & Yaisawarng, S. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. *American Economic Review*, 84(1), 66–83.
9. Farrell, M. J. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society, Series A*, 120(3), 253–281.
10. Hulten, C. R. (2000). Total factor productivity: A short biography. In C. R. Hulten, E. R. Dean, & M. J. Harper (Eds.), *New Developments in Productivity Analysis* (pp. 1–54). University of Chicago Press.
11. Khan, F., & Qureshi, S. (2017). Technical efficiency analysis of manufacturing firms in Pakistan: A stochastic frontier approach. *Pakistan Journal of Social Sciences*, 37(2), 511–526.
12. Kumbhakar, S. C., & Lovell, C. A. K. (2000). *Stochastic Frontier Analysis*. Cambridge University Press.
13. Nazli, H., & Faridi, M. Z. (2009). Efficiency analysis of textile firms in Pakistan: A DEA approach. *Asian Economic Review*, 51(1), 97–117.
14. Shah, S. A., Iqbal, M., & Akhtar, S. (2018). Energy efficiency and industrial productivity in Pakistan: Evidence from manufacturing firms. *Journal of Energy Economics and Policy*, 8(3), 23–38.
15. Varian, H. R. (2014). Big data: New tricks for econometrics. *Journal of Economic Perspectives*, 28(2), 3–28.
16. Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. *Journal of Econometrics*, 136(1), 31–64.
17. Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming companies. *Harvard Business Review*, 92(11), 64–88.
18. Tan, K. C. (2002). Supply chain management practices: Performance and productivity implications. *Journal of Operations Management*, 20(5), 583–605.
19. Christopher, M. (2016). *Logistics & Supply Chain Management* (5th ed.). Pearson.
20. Mentzer, J. T., DeWitt, W., Keebler, J. S., et al. (2001). Defining supply chain management. *Journal of Business Logistics*, 22(2), 1–25.
21. Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and productivity in a supply chain environment. *International Journal of Operations & Production Management*, 21(1/2), 71–87.
22. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data. *Journal of Business Logistics*, 34(2), 77–84.
23. Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., & Fosso Wamba, S. (2019). Big data analytics and firm performance. *International Journal of Production Economics*, 209, 42–58.
24. Bertsimas, D., & Kallus, N. (2020). From predictive to prescriptive analytics. *Management Science*, 66(3), 1025–1044.
25. Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability. *International Journal of Production Economics*, 182, 113–131.
26. Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience framework. *International Journal of Production Research*, 58(10), 2904–2915.
27. Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital supply chain management. *International Journal of Operations & Production Management*, 37(1), 10–36.
28. Lee, H. L. (2004). The triple-A supply chain. *Harvard Business Review*, 82(10), 102–113.
29. Shukla, M., & Jharkharia, S. (2013). Agri-fresh supply chain management: A review of modeling approaches. *International Journal of Logistics Systems and Management*, 14(3), 299–318.

2025 by the authors; Journal of Advanced Engineering & Applied Sciences (JAEAS). This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).