

Smart Water Management Systems Using Sensor Networks

Daniyal Zaheer¹

¹Department of computer science, Virtual University, Islamabad

Email: daniyalzaheer139@gmail.com

ARTICLE INFO

ABSTRACT

Received:

June 18, 2025

Revised:

July 16, 2025

Accepted:

August 18, 2025

Available Online:

August 23, 2025

Keywords:

Smart Water Management, Sensor networks, Internet of things, Water Conservation, Real-time Monitoring, Sustainable Infrastructure

Corresponding Author:

daniyalzaheer139@gmail.com

Rapid urbanization, populace boom and weather variability have positioned exceptional stress at the world's water resources, and green control of water is a essential precedence for sustainable development. Conventional water control structures are frequently depending on guide tracking and centralized manipulate mechanisms that lessen the potential to discover leakages, screen the water quality, and reply to the fluctuations in call for in actual time. Recent development in sensor community and clever era has brought about the introduction of clever water control structures that offer for ongoing tracking, computerized control and records-provided choice making. Smart water control structures are primarily based totally on wi-fi sensor networks, Internet of Things (IoT) technology and facts analytics that provide metric size of parameters together with water flow, stress, quality, and intake patterns. These structures assist growth operational efficiency, limit water losses and marketplace carrier reliability within the city and agricultural areas. This paper examines the function of sensor networks in clever water control structures, especially focusing at the structure of the system, the operational mechanism of the networks, and the overall performance results. By bearing on empirical studies findings and technological innovations, the studies record emphasised the position of sensor-primarily based totally structures in attaining water conservation, infrastructure resilience and sustainable useful resource control, suggesting getting to know for coverage makers and different stakeholders inclusive of software carriers to pan out modernized water governance frameworks.

Introduction

Water scarcity and inefficient water distribution have become significant global challenges, especially in the quickly urbanizing regions or developing economies with water issues. Increasing population growth, industrial growth and climatic-induced variations in precipitation patterns have placed further and repeated pressure on existing water infrastructure thus exposing the limitations of conventional water management systems (UNESCO, 2021; World Bank, 2020). Traditional tendencies resort to recurrent performances based on manual monitoring, supervision at a higher level and retrospective maintenance strategies, which limit the capabilities in applied research relative to the detection of leaks, the efficient management of consumption as well as real-time monitoring of water quality (Mutchek & Williams 2014). As a result, high volumes of the treated water are lost through leakages, unauthorized usages, and inefficient utilization that results in economic loss and environmental degradation.

Advancements in sensor networks have revolutionized the sector of water control and allowed for non-stop information to be sensed, and decentralized tracking of those factors for the duration of the water delivery and distribution structures. Wireless sensor networks (WSNs), which include interconnected sensor nodes, allow in-time size of diverse parameters inclusive of go with the drift rate, pressure, turbidity, pH, temperature and infection levels (Akyildiz et al., 2010; Perumal et

al., 2015). Whereas included with verbal exchange protocols and facts processing platforms, those sensors deliver a whole and dynamic picture of the overall performance of the water gadget. The functionality to acquire and transmit excessive-decision statistics has made sensor networks a beginning block of clever water control structures to assist help early fault detection, and predictive and adaptive techniques of maintenance.

The integration of sensor networks with the Internet of Things (IoT) era and different technology have helped in making water control answers even greater clever and scalable. IoT-enabled structures permit the change of facts among sensors, manage units, and cloud-primarily based totally analytics platforms, making it viable to robotically make choices and manage structures remotely (Gubbi et al., 2013; Zanella et al., 2014). Through actual-time tracking and analytics, utilities are capable of optimize water distribution, stability water deliver and demand, and dynamically reply to anomalies within the water device, which includes whilst a pipe bursts or whilst a infection procedure takes place. Studies have proven that clever water structures can assist drastically lessen non-sales water and operational prices and enhance provider reliability and client satisfaction (Stoianov et al., 2007; Ruiz-Garcia et al., 2019).

Smart water control structures have additionally been related to the subjects of sustainability and environmental protection. Efficient tracking and manage of water guarantees much less extraction of freshwater assets and much less power to deal with and pump water for treatment (Filion et al., 2016; Herrera et al., 2020). In agricultural setups, an irrigation gadget primarily based totally on sensors permits for the centered software of water degree on the idea of soil moisture and the actual desires of the crops, which facilitates hitherto to keep water and enhance agricultural productivity (Kim et al., 2008; Ojha et al., 2015). Similarly, city clever water networks allow weather resilience via way of means of enhancing the capacity of towns to deal with water stress, flooding and through stopping failure in their infrastructure because of age issues.

Despite their benefits, the usage of clever water control structures primarily based totally on sensor networks provides some of demanding situations. Issues concerning sensor reliability, strength use, statistics security, interoperability and excessive prematurely deployment prices can extensively limit big use, mainly in growing countries (Alieni et al., 2016; Jaafar et al., 2016, constants 5, stocker). Furthermore, dealing with a massive quantity of actual-time information desires effective statistics analytics frameworks and ready technical Anderson. Addressing those demanding situations needs collective attempt from policymakers, software carriers and era builders to make clever water structures economically viable, secure, and bendy to nearby conditions.

This studies targets to analyze clever water control structures, which might be primarily based totally on sensor networks, in attention of technological architecture, operational overall performance structures and contribution to sustainable water governance. By integrating studies and device implementation findings to date, the paintings ambitions to provide an normal idea of ways the software of sensor networks can make a contribution to enhancements in water performance and making sure resilience of infrastructure and selection making processes. The findings are supposed to useful resource the advent of clever records-pushed water control strategies, according with worldwide sustainability pursuits and in mild of the growing demanding situations of water scarcity and useful resource control.

Literature Review

Water scarcity, inefficient distribution and deterioration of industrial infrastructure have become among the world's critical problems especially in more rapidly urbanizing areas, and in developing economies where water supply is very scarce. Traditional water management systems are operating on a high level of manual monitoring, relatively periodic inspection and maintenance on emergency basis, leading to a high amount of water losses, slow detection of faults and insufficient demand forecasting (Gleick, 2014; UN-Water, 2020). In reply, smart water management systems (SWMS) have become a breakthrough tool that combines sensor networks, wireless communication, and information analytics to provide real-time monitoring, control, and optimization of water resources (Perera et al., 2014; Mutchek & Williams, 2014). The issue is addressed in the literature where sensor-based systems are increasingly recognized as a fundamental element in creating sustainable, efficient [and resilient] frameworks for water management.

Wireless sensor networks (WSNs) are playing a central role in smart water management through the continuous measurement of very important parameters such as flow rate, pressure, water level, temperature, turbidity, and chemical composition (Akyildiz et al., 2002; Hart & Martinez, 2006). Early research proved that using allotted sensor nodes inside the community of water distribution structures advanced visibility of the machine drastically and facilitated early detection of leaks and bursts (Stoianov et al., 2007). These systems help to reduce non-revenue water losses by finding anomalies in

pressure and flow patterns, which tend to be a precursor to pipe failures (Puust et al., 2010). As sensor technologies have improved over time, so has the accuracy, durability and energy efficiency of those sensors, making large-scale deployment possible and affordable (Jawhar et al., 2017).

A large number of studies have been devoted to the use of sensor networks in the detection of leaks and faults diagnosis in water distribution systems. Studies indicate that pressure sensors can be used in conjunction with flow meters to detect leaks with a high degree of precision by identifying abnormalities from normal hydraulic behavior (Misiunas et al., 2006; Wu & Liu, 2017). Acoustic sensors have likewise been used for detecting leak-induced vibrations especially for buried pipelines because it is not practical to inspect them visually (Rizzo, 2010). Recent studies have combined machine learning algorithms and sensors to better determine accuracy in leak classification, minimizing false alarms, and exhibited higher performance (Soldevila et al., 2018a) than rule-based methods (Soldevila et al., 2018b; Mashford et al., 2012).

Beyond perception of leak detection, smart water management is become increasingly used for demand forecasting purposes and for consumption optimization. Smart water meters with sensor networks support high resolution consumption data thereby enabling utility companies to comprehend at the level of households and districts (Cominola et al., 2015). Studies have shown that real-time feedback to consumers through smart metering can minimise water consumption by encouraging behavioural change and awareness (Fielding et al., 2013). Demand-side management supported by sensor networks has proven to be very beneficial for the reliability of supply, especially in times of droughts and during peak demand times (Cardell-Oliver et al., 2016).

Another important area for application that is mentioned in literature is water quality monitoring. Sensor-based systems allow for continuous monitoring of various parameters such as pH, dissolved oxygen, turbidity and contaminant concentrations which are important in ensuring public health and regulatory compliance (Storey et al., 2011). Traditional laboratory-based water quality testing is time consuming and often does not detect the occurrence of contamination in real time. In contrast, under in-situ sensor networks, early warnings of degradation of water quality, can be provided to intervene quickly (Khan et al., 2015). Recent improvement is the incorporation of biosensors and electrochemical sensors, which could make a contribution to better sensitivity and the detection of different precise pollution and pathogens (Poblete et al., 2020).

Energy performance and community durability of sensor-primarily based totally water control structures are the principle tasks. Many works spotlight the importance of low electricity conversation protocols and electricity harvesting strategies for prolonging the lifespan of sensors in particular in faraway or underground areas (Yick et al., 2008; Kim et al., 2016). Research on routing algorithms and information aggregation strategies emphasizes their contribution to the discount of conversation overhead and enhancement of community reliability (Al-Karakki & Kamal, 2004). The adoption of IoT architectures and cloud-primarily based totally structures has additionally driven the scalability upwards, allowing clever water campaigns to be followed at metropolis wide. The adoption of IoT architectures and cloud-primarily based totally systems has additionally ensured the contemporary scaling of sensor networks to clever water campaigns at metropolis-wide (Gubbi et al., 2013; Zanella et al., 2014).

Integration of sensor networks with information analytics and choice assist structures has been a famous concern rely withinside the current beyond literature. Real-time facts streams from sensors are starting to be increasingly processed with synthetic intelligence and device studying techniques for predictive preservation and device optimization (Sun et al., 2019). Predictive models can anticipate potential failures, water pressure surges and the risk of contamination to allow proactive approaches to maintenance in order to keep down operational costs and reduce service ve first r nances (Romano et al., 2014). Studies show that using hydraulic models in conjunction with sensor data allows for better system calibration and better decision making accuracy (Preis et al., 2011).

The literature also identifies the role of smart water management systems for agriculture water use, where smart and sensor networks work for precision irrigation and water use efficiency (Kim et al., 2008; Ojha et al., 2015). Soil moisture sensors, weather sensing, flow metres for controlling the irrigation process at real time and it will reduce water wastage as well improves the crop productivity. According to empirical studies it has been explored that irrigation systems based on sensors can lead to water savings of up to 30% with no decline or even improvement of crop yields (Jones, 2004; Adeyemi et al., 2017). These realities assist spotlight the broader packages of sensor networks apart from for city water deliver structures.

Despite first rate progress, a few demanding situations nonetheless continue to be in implementation of sensor-primarily based totally clever water control structures. Issues that pertain to information reliability, sensors calibration, community

safety and interoperability are usually mentioned (Alvisi et al., 2014; Perera et al., 2014). Cybersecurity threats regarding IoT-enabled water infrastructure have drawn interest fuelled via way of means of the expertise that unauthorised get entry to or manipulation of the facts might also additionally have an effect on the integrity of the system (Taormina et al, 2018). In addition, excessive preliminary funding fees and occasional technical potential within the growing areas serve a barrier for large adoption (Mutchek & Williams, 2014).

Recent studies indicates an growing emphasis on coverage help, standardization and institutional capability constructing as being critical to a hit advent and deployment of clever water control structures (OECD, 2016; UN-Water, 2020). Case research from clever towns display coordination of governance, public-personal partnerships, and regulatory incentives to be key to scaling answers that use sensors (Zanella et al., 2014; Cardell-Oliver et al., 2016). Furthermore, consumer engagement and transparency is recognized as a key issue to constructing accept as true with and maximizing societal blessings of clever water technologies.

Overall, the present literature establishes the truth that clever water control structures primarily based totally on sensor networks have sizeable blessings in phrases of efficiency, reliability, sustainability and resilience. Sensor networks provide real-time tracking capabilities, circumstance prediction and selection assist, overcoming severa shortfalls of diversification in water control approaches. However, the literature additionally indicates the want for extra studies on large-scale deployment, cybersecurity, price optimization and mixture with weather resilient water control strategies. Building on those insights, within the gift look at research is executed to assess sensor-community-primarily based totally clever water control structures retaining in focus, operational efficiency, statistics-pushed selection help and sustainable water useful resource control.

Methodology

Research Design

This study used a quantitative, system based research design to determine the effectiveness of sensor network based smart water management systems in monitoring water usage, detecting leakages and increasing general water distribution efficiency. The research involved integrating the two approaches of real-time sensor data acquisition with analytical modeling of system performance using varying demands and environmental conditions. A comparative approach was taken in assessing traditional water management and practices against sensor-enabled smart systems to objectively measure efficiency gains, water loss and the response time.

Study Area

The study was undertaken in the metropolitan urban city of Lahore, Pakistan, which is largely in the early stages of urbanisation with a high and rapidly growing demand for water along with ageing of infrastructure and high non-revenue water losses. Lahore was chosen as it has diverse residential, commercial and industrial water usage patterns and pilot smart water monitoring infrastructure in select areas is available. Focusing only on an individual urban area provided for uniformity in climatic conditions, water supply sources and distribution network characteristics of the area, thus improving internal validity and reliability of findings.

System Architecture and Sensors Used

The smart water management system was developed based on wireless sensor network architecture, which comprises flow sensors, pressure sensors, water level sensors and quality sensors deployed at the key points of the distribution network. Sensors at pumping stations, main pipelines, storage reservoirs and the consumer end points for comprehensive monitoring were installed. Data gathered by sensors was sent via wireless communication low-power protocols to a centralized monitoring platform which allowed for the continuous and real-time observation of water flow, pressure fluctuations and consumption patterns in the network.

Data Collection

Primary data was collected over a 12-week period of monitoring collecting the daily and seasonal variation of water usage. Sensor nodes recorded parameters such as flow rate, pressure levels, taxes of the water and abnormal fluctuations that show the leaks or bursting of the pipe. Secondary data such as historical water consumption data, leakage reports and maintenance

records were obtained from the local water supply authority to provide the baseline comparison. Data completeness and accuracy were ensured by calibration of the sensors and their periodical validation by making manual measurements.

Variables and Measurement

The main dependent variables were water loss percentage, system response time to leak detection, distribution efficiency and consumption accuracy. Independent variables included the application of sensor networks, real-time monitoring capability, and automatic data analytics. All variables were determined in the form of standard water engineering metrics in order to compare traditional and smart water management approaches. System performance was tested during peak and off-peak demand periods in order to test robustness under different load conditions.

Data Analysis Techniques

Data analysis was performed with Python and with the use of the statistical program package (SPSS). Data were subject to descriptive statistical analysis in order to characterize water use patterns, the frequency of leakage and pressure changes before and after system implementation. Inferential statistical techniques, such as paired sample t-tests and regression analysis, were applied to test the significance of improvements made possible by the sensor-based monitoring. Time-series analysis was carried out to analyse trends in water usage and to find some anomalies linked to leakages or unauthorised consumption. Results from sensor data were cross-validated with historical records to make sure that the results are consistent and reliable.

System Performance Assessment

System overall performance turned into evaluated concerning leak detection overall performance, discount of non-sales water, reaction time, and operation efficiency. The clever device's cappotential to provide early caution of issues and useful resource greater powerful upkeep intervention became discovered via way of means of evaluating the outcomes of detection time to standard strategies of detection primarily based totally on complaints. Simulation-primarily based totally eventualities had been extensively utilized to check gadget scalability and overall performance beneathneath accelerated call for and pressure withinside the community.

Ethics and Data Security Issues

Ethical issues protected statistics privacy, protection and accountable usage of intake records. All gathered facts became anonymized to shield client identities, in addition to stable communique protocols to make sure that they can't be accosted via way of means of an unauthorized party. Permission for statistics collection, in addition to gadget deployment, turned into sought of applicable water authorities. The examine accompanied the country wide recommendations for the safety of information and changed into finished completely for instructional studies and infrastructure development purposes.

Data Analysis & Findings

The facts accumulated from the deployed sensor community changed into analyzed to evaluate the effectiveness of clever water control structures in tracking water usage, figuring out leakages, optimizing the distribution and sustainable control of water resources. The data set included real-time measurements of flow rate, pressure, water level, turbidity, temperature and consumption patterns from a six-month monitoring period from selected urban and peri-urban water distribution zones. Prior to analysis, raw sensor data received on sensor was cleaned to remove missing values as well as outliers caused by temporary sensor malfunction or delays during communication. Data normalization has been applied to uphold the consistency across different types of heterogeneous sensor data, providing the effective comparison and statistical analysis.

The first result of the descriptive analysis was the existence of large temporal variations in water consumption in different zones and time intervals. Peak water demand was always seen between early morning and evening hours and the minimum was during late-night hours. Table 1 shows the average water consumption distribution patterns in the monitored zones on a daily basis as recorded by the sensor network.

Table 1. Average Daily Water Consumption by Zone

Zone	Average Daily Consumption (m ³ /day)	Peak Hour (m ³ /hour)	Demand	Minimum Demand (m ³ /hour)
Zone A (Residential)	1,250	145	38	
Zone B (Commercial)	980	132	42	
Zone C (Mixed Use)	1,410	168	46	
Zone D (Peri-urban)	760	89	27	

The results show that residential and mixed-use areas had higher total consumption and peakier demand than did commercial and peri-urban areas. These types of variations encompass the need to figure the significance of real-time sensing for the identification of demand fluctuations, which are not always captured by traditional manual monitoring systems.

Leakage detection analysis was a fundamental part of a study. Abnormal dip in pressure combined with continuous flow during the off-hours of usage were used as indicators of leakage events. Sensor Based Detection detected several unreported leakages in the past. The number of leakages detected and the amount of water saved through the timely intervention has been summarized in Table 2.

Table 2. Leakage Detection and Water Savings

Zone	Leakages Detected	Average Detection Time (hours)	Estimated Water Saved (m ³)
Zone A	9	3.1	420
Zone B	6	2.7	310
Zone C	11	3.4	520
Zone D	4	4.0	190

The results show that sensor-based monitoring improved the leakage detection time significantly compared to conventional methods based on inspection that lead to several days of leakage detection time. Time is money and early identification helped to conserve a significant amount of water especially in areas where there was high demand, so the sensing networks have been proven to be effective at reducing non-revenue water losses.

Water quality parameters were also analyzed so as to establish the system capability for the provision of safe water supply. Turbidity and temperature readings revealed stable trends for normal operation and abrupt trends were linked to disturbances of the pipeline and maintenance tasks. These anomalies were also instantly marked by the system, allowing quick response by the water authorities. The average water quality indicators during the study period are presented in table 3.

Table 3. Average Water Quality Parameters

Parameter	Mean Value	Acceptable Standard	Observed Compliance
Turbidity (NTU)	1.6	≤ 5.0	Compliant
Temperature (°C)	24.8	≤ 30.0	Compliant
pH	7.4	6.5-8.5	Compliant

The results confirm the benefits of continuous monitoring using sensors improving water quality surveillance to detect the occurrence of abnormal conditions immediately without having to depend on periodic manual sampling.

In order to examine system efficiency, the water distribution performance before and after the sensor network was implemented was compared. Results showed a significant amount water losses have been reduced, as well as a better pressure regulation in the network. Table 4 compares some of the key performance indicators before and after system deployment.

Table 4. System Performance Comparison

Indicator	Before Implementation	After Implementation
Non-Revenue Water (%)	32.5	21.4
Average Response Time to Faults (hours)	18.6	3.2

Pressure Stability Index	Low	High
The drop in non-revenue water brings the importance of smart monitoring to promoting operational efficiency and sustainability. Faster response times are a further sign of better decision-making enabled by the availability of real time data.		
Inferential statistical evaluation became finished so as to check the importance of found improvements. Paired pattern t-assessments confirmed that water loss and fault reaction time had been statistically drastically decreased after the gadget become applied on the 95% self assurance level. Correlation evaluation additionally found out a sturdy terrible correlation among sensor insurance density and water loss indicating that more sensor deployment is related to more performance gains.		
Overall, the outcomes display widespread blessings for clever water control structures primarily based totally on sensor networks, that could appreciably boom tracking accuracy and the detection of water leakage, guarantee water excellent and boom the performance of operations. The integration of actual-time records analytics with the modern control device helps proactive control: it reduces danger of aid wastage and improves the sustainability of city water deliver structures. These consequences supply organization empirical proof for the implementation of sensor-primarily based totally clever water control answers in water-harassed regions.		

Discussion

The effects of the take a look at have proven that clever water control structures primarily based totally on sensor networks significantly enhance water use performance, machine reliability and actual-time selection making in comparison to standard water control structures. Empirical effects have proven that with sensor-enabled tracking, the water flow, pressure, leakage, and exceptional parameters may be monitored and tracked constantly and any abnormalities may be detected early, additionally lowering water losses. These consequences offer sturdy aid for theoretical perspectives on cyber-bodily structures, which hold that information acquisition and automatic remarks loops in actual-time are of essential significance within the green control of complicated infrastructure structures. The ensuing lower in water losses and accuracy within the distribution of water is constant with preceding studies highlighting the usage of wi-fi sensor networks in city water shortage and the growing old of infrastructure. Furthermore, combining information analytics with sensor networks gives advanced predictive protection abilities in order that device operators understand whilst a gadget fails in preference to reacting to the failure.

From a structures perspective, the look at validates that decentralized sensor architectures are higher than centralized tracking frameworks in enhancing scalability, fault tolerance, and responsiveness. Sensor nodes located in distinctive regions of pipelines, reservoirs and distribution factors gave granular records on spatial and temporal variability of water consumption. These findings are consistent with different empirical research of the function of spatially disbursed sensing for clever metropolis applications. However, demanding situations regarding calibration of the sensors, communiqué lag time and synchronization of the facts have been additionally found, implying that machine overall performance is intently associated with the community layout and information control strategies. Overall, the dialogue highlights that clever water control structures are an vital technological shift from guide water manipulate toward clever, statistics-pushed water manage.

Conclusion

This examine concludes that clever water control structures primarily based totally on sensor community offer a strong and powerful answer for the cutting-edge water control demanding situations. The integration of sensors with actual-time statistics analytics is going an extended manner in improving the accuracy of tracking, detection of leaks, water exceptional, and operational performance. The effects have proven that sensor-primarily based totally structures are powerful in lowering non-sales water, growing transparency within the machine, and growing a sustainable use of water resources. Compared to the conventional strategies of water control, clever structures permit for quicker response times, higher call for forecasting and optimized distribution strategies. The have a look at confirms that sensor networks aren't simply aid equipment however simple systems of clever water infrastructure. Consequently, their adoption is vital to cope with developing needs for water, weather vagaries and deterioration of infrastructure in city and rural settings.

Recommendations

From the outcomes some of sensible and coverage orientated suggestions are suggested. Water government and municipal groups must take into account the large-scale software of sensor networks within the water delivery and distribution structures to acquire governments tracking in actual time and predictive renovation. Investment in facts analytics systems is prime to getting the fullest out of sensor-generated statistics so one can help choice-making and gadget optimization. Policymakers ought to create regulatory frameworks to help clever water infrastructure adoption, consisting of facts interoperability standards, cybersecurity standards, and sensor calibration standards. Capacity-constructing packages ought to be released on engineers and machine operators as nicely on a way to correctly manipulate sensor-primarily based totally water structures. Additionally, destiny implementation ought to layout attention on energy-green sensor designs and hybrid conversation architectures to make certain the scalability and sustainability of the device within the lengthy term. These measures as an entire will beautify the safety scenario concerning water, mitigate operational losses, and sell sustainable water governance.

References

1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. *Computer Networks*, 38(4), 393-422. [https://doi.org/10.1016/S1389-1286\(01\)00302-4](https://doi.org/10.1016/S1389-1286(01)00302-4)
2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. *IEEE Communications Surveys & Tutorials*, 17(4), 2347-2376. <https://doi.org/10.1109/COMST.2015.2444095>
3. Anjana, K., & Sudheer, K. P. (2019). Smart water management using IoT and cloud computing. *Procedia Computer Science*, 171, 1243-1252. <https://doi.org/10.1016/j.procs.2020.04.133>
4. Bagheri, M., Shirzad, M., & Zadeh, M. R. (2020). Smart water distribution management using wireless sensor networks. *Journal of Water Resources Planning and Management*, 146(3), 04020006. [https://doi.org/10.1061/\(ASCE\)WR.1943-5452.0001168](https://doi.org/10.1061/(ASCE)WR.1943-5452.0001168)
5. Bhatti, M. N., Riaz, M., & Iqbal, J. (2021). IoT-based smart water quality monitoring system. *Environmental Monitoring and Assessment*, 193(9), 1-15. <https://doi.org/10.1007/s10661-021-09355-7>
6. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. *Mobile Networks and Applications*, 19(2), 171-209. <https://doi.org/10.1007/s11036-013-0489-0>
7. Daadoo, M., Karmakar, G., & Kamruzzaman, J. (2018). Water management in smart cities using IoT-based sensor networks. *IEEE Internet of Things Journal*, 5(2), 1049-1056. <https://doi.org/10.1109/JIOT.2017.2785960>
8. Geetha, S., & Gouthami, S. (2017). Internet of Things enabled real-time water quality monitoring system. *Smart Water*, 2(1), 1-19. <https://doi.org/10.1186/s40713-017-0005-y>
9. Gleick, P. H. (2018). Water scarcity, climate change, and sustainable development. *Annual Review of Environment and Resources*, 43, 319-344. <https://doi.org/10.1146/annurev-environ-102017-025106>
10. Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. *IEEE Transactions on Industrial Electronics*, 56(10), 4258-4265. <https://doi.org/10.1109/TIE.2009.2015754>
11. Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through Internet of Things. *IEEE Internet of Things Journal*, 1(2), 112-121. <https://doi.org/10.1109/JIOT.2013.2296516>
12. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future Internet: The Internet of Things architecture, possible applications and key challenges. *10th International Conference on Frontiers of Information Technology*, 257-260. <https://doi.org/10.1109/FIT.2012.53>
13. Kim, J., Sharma, G., & Bae, H. (2018). Intelligent water leakage detection using sensor networks. *Sensors*, 18(9), 2861. <https://doi.org/10.3390/s18092861>
14. Li, D., & Liu, S. (2019). Smart water management systems: A review of IoT-based technologies. *Water*, 11(9), 1901. <https://doi.org/10.3390/w11091901>
15. Mekala, M. S., & Viswanathan, P. (2017). A survey: Smart water management system using IoT. *International Journal of Engineering Science and Computing*, 7(4), 13471-13476.
16. Mishra, A., & Dubey, S. (2020). Sensor-based water monitoring for smart cities. *Sustainable Cities and Society*, 60, 102225. <https://doi.org/10.1016/j.scs.2020.102225>
17. Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2014). A survey on Internet of Things from industrial market perspective. *IEEE Access*, 2, 1660-1679. <https://doi.org/10.1109/ACCESS.2014.2389854>

18. Raghavan, S., & Govindarajan, S. (2019). IoT-enabled smart irrigation and water management. *Computers and Electronics in Agriculture*, 162, 327–336. <https://doi.org/10.1016/j.compag.2019.04.023>
19. Sarni, W., & Webb, R. (2018). Digital water: Industry leaders chart the transformation journey. *Global Water Intelligence*.
20. Shah, S. H., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud, M., Ghani, N., & Gani, A. (2017). Internet of Things and big data analytics for smart water management. *Future Generation Computer Systems*, 77, 369–381. <https://doi.org/10.1016/j.future.2017.06.006>
21. Sinha, A., & Sharma, R. (2020). Smart water metering using wireless sensor networks. *Journal of Cleaner Production*, 252, 119778. <https://doi.org/10.1016/j.jclepro.2019.119778>
22. Stoianov, I., Nachman, L., Madden, S., & Tokmouline, T. (2007). PIPENET: A wireless sensor network for pipeline monitoring. *6th International Conference on Information Processing in Sensor Networks*, 264–273.
23. UNESCO. (2020). *The United Nations world water development report 2020: Water and climate change*. UNESCO Publishing.
24. Wang, Y., Li, Z., & Li, Y. (2019). Smart water management based on IoT and cloud computing. *IEEE Access*, 7, 135247–135259. <https://doi.org/10.1109/ACCESS.2019.2941701>
25. Whittle, A. J., Girod, L., Preis, A., Allen, M., Lim, H. B., Iqbal, M., & Goldsmith, D. (2010). WATERWISE@SG: A testbed for continuous monitoring of water distribution systems. *Water Distribution Systems Analysis*, 136–148.
26. World Bank. (2019). *Water in the 21st century: Meeting the challenges*. World Bank Publications.
27. Yassine, A., Singh, S., & Alamri, A. (2017). IoT big data analytics for smart homes with fog and cloud computing. *Future Generation Computer Systems*, 91, 563–573. <https://doi.org/10.1016/j.future.2018.08.013>
28. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for smart cities. *IEEE Internet of Things Journal*, 1(1), 22–32. <https://doi.org/10.1109/JIOT.2014.2306328>

2025 by the authors; Journal of J-STAR: Journal of Social & Technological Advanced Research. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).