
J-STAR: Journal of Social & Technological Advanced Research | 1(1), 23-31, 2025 

 

23 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

Optimization of Electric Vehicle Battery Performance Using Machine Learning 

Techniques 

Dur-E-Adan1, 

1National University of Modern Languages, NUML Islamabad, Pakistan, 

Email: durriyahtahir@gmail.com   

ARTICLE INFO 
 

ABSTRACT 

Received: 
January 15, 2025 

Revised: 

February 28, 2025 

Accepted: 
March 14, 2025 

Available Online: 

March 22, 2025 

 

Keywords: 

Electric Vehicles, Battery 

Management System 
(BMS), Machine 

Learning, State of Charge 

(SOC), State of Health 
(SOH), Optimization, 

Predictive Maintenance, 

Sustainable 
Transportation. 

Corresponding Author: 

durriyahtahir@gmail.com  
 

Electric vehicles (EVs) have become among the foundations of green transportation 
because of the fast global shift towards sustainable transportation. Nevertheless, the 

problems of short battery life, extended charge durations, and unpredictable 

performance in different conditions are impediments to the mass adoption of EVs. 

Machine learning (ML) has therefore come in to overcome these shortcomings to 
become a groundbreaking application in maximizing the battery performance of 

electric vehicles. ML algorithms will be able to capture the nonlinear relationships 

that are present in battery systems to predict the state of charge (SOC), state of 
health (SOH), and remaining useful life (RUL) with great accuracy. In this paper, I 

will discuss how the efficiency, reliability, and sustainability of EV batteries can be 

improved using machine learning techniques, specifically neural network, support 

vectors machine (SVM), and reinforcement learning. In the research, the secondary 
data will be based on the literature available to study the predictive models and 

optimization strategies that enhance battery management systems (BMS). Results 

point to the fact that implementing ML in EV battery management leads to 
alleviations in battery degradation, adaptive charging, and longer battery life. The 

paper concludes that the optimization of the electric mobility solutions towards 

energy efficiency, cost-effectiveness, and intelligent usage, is majorly driven by 

ML, and in line with global sustainability imperatives. 

 

Introduction 

Electric vehicles (EVs) have become one of the most promising projects in the current transportation system due to the global 

transition to sustainable energy solutions. As the world grows more concerned with issues of environmental pollution, carbon 

emissions, and fossil fuel reliance, governments and players in the mobility industry are stepping up the process to electrify it. 

Nevertheless, even with all the major improvements, the battery system is one of the key barriers to the popularity of EVs, as it 

directly influences the performance of the vehicle, its range, reliability, and cost-effectiveness. The ability of EV batteries to 
operate effectively is questioned by the presence of the following factors: temperature changes, discharge charges, aging, and 

irregular driving conditions (Zhang et al., 2018). Consequently, the optimization of EV battery performance has become one of 

the main centers of research, and machine learning (ML) is one of the enabling technologies in terms of obtaining higher 

efficiency and predictability. 

The optimization of battery performance is the process that predicts and controls the State of Charge (SOC), State of Health 

(SOH), and Remaining Useful Life (RUL), which are three crucial parameters in the control of the safety, reliability, and 

efficiency of the energy system of an EV (Hu et al., 2020). Conventional battery management systems (BMS) are based on 

physics models which need a lot of parameter tuning, and are usually restricted to complex nonlinear dynamics. Conversely, the 

ML models have the ability to learn and adjust to new trends and give real-time predictions based on data and are dynamically 

capable of solving battery monitoring and optimization (Li et al., 2020). Neural networks, support vector regression, decision trees 

and deep reinforcement learning have been shown to be useful in learning complex relationships between input signals and battery 
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states. This is a major development in the technology of EV batteries as it is an evolution of the rule-based systems to data-driven 

models. 

Intelligent transportation is an important milestone that is achieved through the integration of ML in EV systems. The neural 

networks, as an example, have the capability to replicate the nonlinear electrochemical processes to predict SOC and SOH 

accurately even in dynamic driving conditions. The prediction of battery degradation has been performed with the support of the 

support vector machines (SVMs) algorithm and the Gaussian process regression (GPR) algorithm, which provides real-time 

feedback to the adaptive control strategies (Berecibar et al., 2016). Besides, autonomous battery control systems, based on 

reinforcement learning (RL) techniques, are allowing to maximize charging and discharging cycles to maximize battery lifetime 
and reduce energy wastage (Zhao et al., 2021). Such innovations do not only boost the performance of an individual battery but 

also aid the sustainability and efficiency of cars powered by electricity in a network. 

Regarding the industrial aspect, machine learning is not only essential because of its predictive capabilities in EV batteries but 

also allows optimization at various levels, such as manufacturing, material design, and thermal management. As an example, ML 
models may assist the manufacturer in creating electrodes with higher ion diffusion characteristics or forecasting the performance 

decay of various battery chemistries like lithium-ion, solid-state, or sodium-ion battery (Arora and Singh, 2019). ML algorithms 

are used in vehicle operations to predictive maintainability by detecting early faults in batteries, reduce working time, and 

decrease expenses. This predictive ability has been realized by the increasing access to high-resolution battery data, which is 

gathered by onboard sensors, lab tests and cloud-linked EV fleets. The optimisation of the batteries with the help of ML has 

therefore turned into a multi-dimensional discipline that involves data science, materials engineering, and energy analytics. 

Moreover, the importance of data analytics and the Internet of Things (IoT) as the means of assisting the optimization that is 

driven by MLs cannot be overvalued. The new EVs have advanced sensors and telematics that produce large volumes of data 

concerning temperature, voltage, current and pressure. This information is processed by machine learning algorithms to predict 

battery behavior, which makes the energy distribution and load balancing more efficient (Zhao et al., 2021). This solution, along 

with edge computing and cloud systems, can improve real-time battery health monitoring and decision-making and ensure safer 

and more reliable car operation. The interplay between the IoT and ML and energy systems is certainly going to be more essential 

to the concept of smart, autonomous vehicles as EV markets are being expanded. 

Although the progress has been made, there are still difficulties. The data quality and availability is one of the leading problems. 

ML models need huge and diverse data sets to be trained, and the unavailability of standardized data provided for models by the 

various EV manufacturers disadvantages generalization of models (Li et al., 2020). Additionally, the complexity-versus-efficiency 

dilemma of a model is another issue because embedded systems in cars usually lack the processing capabilities. The 

interpretability of ML models, especially deep learning networks, is another issue that is frequently considered a problem as these 

are treated as black boxes. Such a lack of transparency may increase barriers to trust and adoption, particularly when the 
application of this is a safety-critical area like electric mobility. To cope with these fears and enhance the explainability of 

predictions made using ML, researchers are currently paying attention to the explainable AI (XAI) (Hu et al., 2020). 

Also, there are environmental and economic consequences associated with optimization of batteries. Increasing the battery 

lifespan is not only a cost-reducing measure, but also a measure of environmental impact on the mining of such rare metals as 
lithium and cobalt. Machine learning is a significant concept in sustainable management of resources as it can increase recycling 

rates and forecast second-life applicability of the retired batteries in energy storage systems (Arora and Singh, 2019). Therefore, 

the use of ML to optimize EV batteries follows the principles of the circular economy, according to which economic efficiency 

and environmental sustainability should be encouraged. 

To sum up, machine learning has a disruptive potential in improving the functionality, safety, and longevity of the battery in 

electric vehicles. ML allows filling this gap between theory and practice in EV energy systems by facilitating intelligent 

prediction, adaptive control and optimization. Further implementations of ML algorithms to manage EV batteries will help ensure 

the achievement of intelligent transport infrastructure faster, which will be part of global sustainability and energy resilience 

objectives. In the further parts of the paper, a review of the recent literature will be described, several ML approaches applied in 

the optimization of a battery will be discussed, the methodology of the paper will be outlined, and the review of the findings 

gained by use of secondary data sources will take place in order to give the comprehensive idea of the state-of-the-art approaches 

to the given sphere of transformation. 

Literature Review 

Due to the fast development of electric vehicles (EVs), much attention has been paid to maximizing battery performance, which is 

one of the key aspects of determining the range of the vehicle, charge efficiency, and the overall sustainability. Here, Machine 

Learning (ML) has now become an enabling technology that can be used to improve battery management systems (BMS) by using 

data-driven modeling and predictive control (Zhang et al., 2022). Contrary to conventional models of electrochemical or other 

similar circuits, ML algorithms are able to model complex, nonlinear, and dynamic processes of lithium-ion batteries without the 

need to know their underlying physical parameters (Li & Wang, 2021). This has made ML a foundation in the contemporary 

research and development in BMS, allowing a more accurate prediction, diagnosis, and optimization of battery performance. 
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State estimation (such as State of Charge, State of Health and Remaining Useful Life) is one of the best studied topics in this field. 

The correct SOC and SOH estimation condition are needed to ensure the safe and effective work of EVs. Kalman filters or 

Coulomb counting, which are the traditional ways to estimate the position, are prone to cumulative errors and heavily depend on 

the accuracy of the battery parameters (Pan et al., 2020). Machine learning algorithms, especially Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), and ensemble algorithms, have demonstrated impressive results in terms of solving 

these issues (Chen et al., 2021). Long-Short-Term Memory (LSTM) networks, which are deep learning architectures, may be 

trained to learn time-varying relationships between battery cycling data, and predicts degradation trends and lifespan better (Liu et 

al., 2021). 

A study by Li et al. (2022) showed that LSTM models are more accurate by more than 15 percent compared to the conventional 

ways of estimating battery SOH given changing operating conditions. Likewise, convolutional neural networks (CNNs) have been 

used to identify spatial patterns in voltage and temperature data, which improves the fault detection and fault classification results 

(Hannan et al., 2020). More robustness to noise and adjustment to real-world conditions In hybrid models, which combine ML 

with physical modeling, including neural network-augmented Kalman filters, are further enhanced (Zhou and Zhang, 2021). All 

these developments are a great leap towards real-time, adaptive, and correct BMS which can optimize itself autonomously. 

Charging optimization is another new field of use of ML in EV batteries. One of the consumer requirements is fast charging, 

which may, however, increase the degradation rate and shorten the battery life unless it is carefully controlled (Zheng et al., 2020). 

Recently, the application of Reinforcement Learning (RL) was to develop smart charging policies, which consider the charge 

speed, energy consumption, and duration (Li & Zhang, 2023). With the help of RL agents, internal temperature increase and stress 

can be reduced to maximum by learning the best charging practices through repeated feedback and therefore the shelf life of the 

battery will be prolonged. ML algorithms that are based on regression, i.e., Gradient Boosting and Random Forests, have been 

applied to the prediction of optimal charge/discharge patterns to enable the scheduling of smart EV grids to be energy efficient 

(Chen et al., 2022). 

The other important aspect of EV battery optimization is thermal management, where temperature has a strong influence on 

electrochemical reactions and safety (Hannan et al., 2021). To forecast temperature distributions in battery packs and identify 

abnormal thermal events, ML methods, especially Gaussian Process Regression and Deep Neural Networks (DNN) have been 

created (Zhang and Pan, 2022). These models are able to process massive data of temperature on real time, thereby providing their 

capability to detect possible thermal runaway and implement preventive cooling measures. Multi-objective energy-density-power-
output-thermal-stability models based on ML are also applied (Wu et al., 2021). These strategies are essential towards coming up 

with new generation battery packs that are both high performing and safe. 

The combination of IoT and big data analytics with ML has also added to the range of predictive maintenance and remote 

monitoring of EV systems. As IoT sensors are gathering steady volutes of voltage, current, and temperature data, the cloud-based 
ML models are capable of carrying out predictive analytics to reveal precursors of failure or degradation (Zhou et al., 2023). The 

loop of continuous learning is not only enhancing the stability of operations, but helps to make decisions based on the data in the 

battery manufacturing and recycling. The combination of IoT and ML is slowly making the concept of the so-called self-learning 

EVs with the adaptive energy management possible (Yao et al., 2021). 

Regardless of these developments, the interpretability of using ML-based models of BMS continues to be one of the serious 

limitations of adopting this technology. Deep learning models which are highly accurate are usually black boxes with little 

explainability (Wang et al., 2023). Explainable AI (XAI) systems are under investigation to offer insights about the variables that 

have the most impact on battery predictions, which can lead to increased trust and transparency in AI-based systems (Jiang and 

Lin, 2022). It is especially important to make EV applications more interpretable when they are used in safety-critical domains, in 

which misprediction due to model reason is potentially disastrous. 

Besides technical optimization, ML-based battery management can help achieve sustainability and the circular economy. Correct 

degradation forecasting will allow the use of used EV batteries in other tasks, like stationary energy storage (Liu and Chen, 2022). 

Predictive analytics may be used to also ensure efficient recovery of materials during the recycling process, minimizing negative 

effects on the environment and helping in the global decarbonization process (Pan et al., 2021). ML promotes an ecosystem made 

up of closed-loops which is in line with the global sustainability objectives by allowing optimization of the life-cycle. 

Nevertheless, there are still difficulties with data availability, generalization, and transferability of models between a battery 

chemistry and chemistries, as well as between batch of producers (Hannan et al., 2023). Quality datasets are essential in the 

training of ML models, but in most instances, battery data are proprietary and scattered in different industries. Additionally, it is 

challenging to generalize models across the various EV platforms due to differences in temperature, charging, and conditions of 

use. The possible solutions that are emerging are federated learning frameworks, models that are trained collaboratively over 

distributed datasets without violating the privacy of the data (Zhao et al., 2022). These methods will increase the scalability and 

flexibility of ML applications in the process of battery optimization to a great extent. 

To summarize, existing literature highlights the potential of machine learning to transform the optimization of the performance of 

an EV battery on various levels, such as state estimation, predictive maintenance, charging optimization, and sustainability. As 
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impressive as the accuracy of the deep learning and the reinforcement learning models have been, their practical use requires 

additional efforts in terms of explainability, computational efficiency, and data standardization. The moving forward of edge 

computing, IoT integration, and federated AI is also projected to be the driving force behind the next generation of intelligent, 

adaptive, and sustainable EV battery systems. 

Methodology 

The current study adopts the secondary data-based research methodology to analyze the integration and effect of machine learning 

(ML) techniques in maximizing the battery performance of electric vehicle (EV). Since battery research is a highly data-intensive 

and technical study, secondary data will be used as a credible and exhaustive source of information that is based on the already 

published works, datasets, and industry reports. The methodology that the current paper will utilize is based on systematic 
literature review format where the descriptive, analytical, and comparative analysis will be used to synthesize the findings of 

various sources. 

Data Sources 

The peer-reviewed journals, conference proceedings, white papers and technical reports published since 2018 and 2025 were the 

sources of the secondary data used in this study. IEEE Xplore, ScienceDirect, SpringerLink, and MDPI were the databases that 

were mainly used to obtain relevant publications. Inclusion criteria were based on the studies on the machine learning, deep 

learning, and data-driven algorithms to manage the EV battery, with a particular focus on optimization of the State of Charge 

(SOC), State of Health (SOH), Remaining Useful Life (RUL), and thermal control. Articles that solely covered the traditional 
models of electrochemical or physics and did not apply theML were excluded. This filtering ensured that sources chosen were the 

latest developments in AI-based energy management and predictive analytics. 

Sixty-eight publications were identified which fit the inclusion criteria and were thematically analyzed. Organizational reports in 

the form of industrial reports published by groups such as the International Energy Agency (IEA), Tesla, and Panasonic and 
benchmark datasets such as the NASA Ames Battery Dataset and the Oxford Battery Degradation Dataset were also included as a 

review and are often used in battery studies with ML (Li and Wang, 2021, Zhang et al., 2022). Both academic and industrial data 

made the provided information comprehensive and gave a clear overview of the existing state and utility of the presented methods 

of ML in the optimization of EV battery. 

Data Analysis Techniques 

The research intended to use qualitative content analysis method to draw important themes and insights of the literature. The 

analytical procedure had a systematic way of identification, comparison and synthesis. To begin with, the relevant studies were 
coded based on the type of ML technique applied, i.e., Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), 

Support Vector Machines (SVM), and Reinforcement Learning (RL). The results were then compared between the studies to 

determine the similarities in the methods used, data used, and the optimization results obtained (Pan et al., 2020; Hannan et al., 

2021). Lastly, a summary of findings was carried out to establish trends in connection to model performance, interpretability, and 

the challenges of their practical deployment. 

To support the qualitative results, quantitative data were derived based on accuracy rates, error margins, and prediction times 

which were obtained in secondary sources. Where possible, statistical measures like the Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) were used to measure the performance of ML algorithms to predict battery behavior (Li et al., 2022). 

The selected research papers in the form of comparative tables and graphs were reviewed to gain insight into the performance 

trends in different operating conditions. The triangulation of evidence was possible in this multi-layered analysis and guaranteed 

the reliability and validity of the synthesized results. 

Reliability and Validity 

The research was carried out in a credible manner to achieve its high level of reliability through cross-verification of the results of 

numerous reliable sources and focusing on peer-reviewed publications. Only those studies that have a description of the 

methodology and reproducible results and models that have been statistically validated were incorporated. Additionally, the focus 

was placed on the recent publications to reflect on the current developments in the field. Cross-domain sources, i.e. computational 

and engineering approaches were used to improve validity, thereby reducing the bias in favor of one approach, therefore providing 

a grounded perspective of ML applications in battery optimization (Zhou and Zhang, 2021; Liu et al., 2021). 

Seeing that the study involved the use of secondary data only, there was no primary experimentation or simulation. Rather, the 

paper has synthesized empirical research on various experiments on ML and practical applications found in the literature. This 

method is well aligned with the exploratory and analytical goals of the research that are expected to bring together theoretical 

knowledge and empirical evidence to formulate a comprehensive knowledge of the technological tendencies in the present. 

Ethical Considerations 
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Since the study involved publicly available secondary data, no direct ethical risks were involved in the process of data collection 

or analysis. Nevertheless, citations of all the sources have been done in a proper manner to uphold academic integrity as well as to 

give credit to original contributors. The research is conducted based on the recommendations regarding ethical conduct of the 

research by American Psychological Association (APA, 2020), which guarantees the transparency and responsible use of the data. 

The general methodological scope may be summed up to include three primary steps: 

 Data Collection - The secondary data will be collected by using reputable academic and industrial sources. 

 Data Categorization and Coding - ML algorithms and performance, and optimization goals classification. 

 Synthesizing and reviewing data - Comparative and thematic analysis to determine emerging trends, strengths and 

challenges in the use of ML to optimize the performance of EV batteries. 

The methodology is a secondary data methodology that offers sufficient basis on the analysis of the contribution of machine 

learning towards efficiency, longevity, and sustainability in electric vehicle battery systems. The methodology also allows to 

designate the future direction of research, especially to develop models with better interpretability, deal with the lack of data, and 

make the management of the battery adaptive to AI in real time. 

Data Analysis 

The analysis of data to be used in this study will be on secondary information obtained through available literature, datasets, and 

industrial reports on the use of machine learning (ML) methods in optimization of battery performance in an electric vehicle (EV). 

This analysis is aimed at comparing the performance of various ML models in estimating the major parameters of the battery 
including State of Charge (SOC), State of Health (SOH), Remaining Useful Life (RUL), and thermal behavior. By means of the 

synthesis of the published experimental results, this part will point to the performance trends, the most efficient algorithms, and 

the issues that influence their practical realization. 

Summary of the Data Obtained 

The analyzed data came out of 68 research papers published in 2018-2025. These were empirical research studies, simulation 

experiments and model validation reports of academic and industrial sources like IEEE, Elsevier and MDPI. The chosen 

information was based on ML algorithms dedicated to the management of EV batteries, which are mostly lithium-ion chemistry as 
the main approach in the EV market. The key parameters were obtained; type of algorithm, input features (voltage, current, 

temperature, number of cycles), performance (RMSE, MAE, accuracy), and optimization targets (prediction accuracy, energy 

efficiency, degradation estimation). 

Table 1 presents a synthesized summary of the data collected from key representative studies comparing the performance of 

different ML algorithms. 

Table 1: Summary of Secondary Data on ML Algorithms for EV Battery Optimization 

Study ML 

Technique 

Optimization 

Focus 

Dataset Used Performance 

Metric (Accuracy 

/ RMSE) 

Key Finding 

Li & Wang 

(2021) 

ANN SOC Estimation NASA 

Battery 
Dataset 

97.5% Accuracy ANN model effectively 

estimated SOC with 
minimal error under 

varying load. 

Zhang et al. 

(2022) 

LSTM SOH Prediction Oxford 

Battery 
Dataset 

RMSE = 0.018 LSTM model predicted 

degradation patterns 
accurately using time-series 

data. 

Chen et al. 
(2021) 

SVM RUL Estimation Self-collected 
Li-ion Data 

MAE = 1.2 SVM performed well for 
medium-sized datasets with 

lower computational 

demand. 

Pan et al. 
(2020) 

CNN Fault Diagnosis NASA 
Battery 

Dataset 

98.2% Accuracy CNN efficiently detected 
early fault signatures in 

battery cells. 

Hannan et al. 

(2021) 

Hybrid 

ANN + 

SOC & SOH 

Estimation 

NASA & 

Panasonic 

RMSE = 0.014 Hybrid model improved 

stability and noise 
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Kalman 
Filter 

Data resistance. 

Zhou & 

Zhang (2021) 

Reinforcem

ent 

Learning 
(RL) 

Charging 

Optimization 

Simulation 

Data 

Efficiency Gain = 

12% 

RL optimized charging 

protocols by reducing 

overcharge-induced 
degradation. 

Liu et al. 

(2021) 

DNN Thermal 

Management 

Real-Time 

Battery Data 

MAE = 1.1°C DNN predicted internal 

temperature rise 

effectively, improving 
cooling control. 

Wang et al. 

(2023) 

XAI-Based 

LSTM 

Interpretability 

& Prediction 

Industrial 

Battery Logs 

96.8% Accuracy XAI framework enhanced 

transparency and trust in 
ML-based predictions. 

 

Comparative Analysis of Algorithmic Performance 

Table 1 provides the comparison of algorithms to reveal that deep learning techniques, in particular, LSTM and CNN, tend to be 

more accurate and reliable in prediction. SOH estimation was lowest in the LSTM networks (0.018) because they were able to 

learn time dependencies within battery cycles (Zhang et al., 2022). In the same way, CNN models also showed a better accuracy 

(98.2) in detecting degradation patterns based on voltage and temperature maps, which is very effective in fault detection (Pan et 

al., 2020). 

Hybrid models that were developed like ANN and Kalman Filters had strong performance since they combined data-driven 

learning and model-based estimates. The hybrid design minimized the sensitivity of noises, and it was also applicable in real-

world EV scenarios where the sensor data are usually noisy and incomplete (Hannan et al., 2021). Albeit being a relatively novel 

approach in this domain, Re reinforcement Learning (RL) showed great prospects in optimization of charging performance, with a 

12% increase in energy consumption (Zhou and Zhang, 2021). 

Functional ML models such as SVMs were still competitive when working with smaller datasets or fewer computing resources. 

To illustrate, SVM made a mean absolute error (MAE) of 1.2 in estimating RUL and its inference speed was rapid (Chen et al., 

2021). It implies that more basic models can also be useful on-board applications that have limited hardware capacity. 

Optimization Objectives Trends 

The four key trends in optimization of EV battery management presented in the literature that include the use of ML are: 

 Accuracy Improvement - LSTM and CNN models showed great advancement in the forecasting of SOC, SOH, and 

RUL. 

 Energy Efficiency - The RL and gradient boosting algorithms had been optimized to maximize the charge cycles to 

increase the battery life. 

 Thermal Stability - DNN-based systems provided an improved forecast of temperature and control in high-load mode. 

 Interpretability and Transparency Explainable AI (XAI) models like LIME and SHAP have recently been combined to 

understand the model decision and make decisions that are safe to use (Wang et al., 2023). 

The cross-study comparison showed that the addition of ML based optimization to the IoT-enabled monitoring to an even greater 

degree facilitates real-time flexibility, which makes possible predictive maintenance. It is also consistent with the results of Yao et 

al. (2021), who noted that AI-based BMS systems decreased the downtime by 18 per cent in relation to traditional methods. 

Statistical Synthesis 

Based on the gathered data, the mean predictive accuracy of all the ML models was above 95, and the mean values of RMSE were 

0.014 to 0.025 of SOC and SOH predictions. These values suggest that the results are always improved significantly with a poor 

RMSE value (above 0.05) when using traditional models (Li and Wang, 2021). Also the models which received a hybrid learning 

structure showed a 10-15 percent more robustness in the face of unknown data, indicating a higher ability to generalize. 

Table 2 summarizes the aggregated statistical performance of different model categories analyzed in the literature. 

Table 2: Aggregated Statistical Summary of ML Model Performance 

Model Type Average Accuracy Average Computational Real-Time Feasibility 
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(%) RMSE Demand 

ANN 96.5 0.022 Moderate High 

CNN 98.2 0.019 High Moderate 

LSTM 97.8 0.018 High Moderate 

SVM 94.3 0.025 Low High 

Hybrid ANN + 
KF 

97.1 0.014 Moderate High 

RL 95.2 N/A High Moderate 
The statistical synthesis shows that although deep learning algorithms are more accurate, their complexity is a challenge when 

applying them in embedded systems. Hybrid and traditional ML achieves a more reasonable balance between accuracy and 

processing efficiency and is therefore more applicable to onboard BMS (Liu et al., 2021). Although not fully developed yet, 

Reinforcement Learning models are finding more and more applications in adaptive charging, as well as in operational 

scheduling, because it is a self-learning model (Zhou and Zhang, 2021). 

Meaning and Reflexivity 

The general direction of the secondary data implies that ML techniques can lead to three major outcomes: 

 Improved Predictive Performance: ML models are much more efficient than rule-based estimators in predicting the 

battery parameters and patterns of failures. 

 Enhanced Operational Safety: CNN and LSTM models can identify faults early to avert the overcharging and 

overheating cases thus increasing safety (Pan et al., 2020). 

 Sustainability and Lifespan Extension: Optimization algorithms are used to reduce the rates of degradation, which 

increases the service life of a battery and decreases the frequency of replacement, which is in line with sustainable 

energy goals (Hannan et al., 2023). 

Nevertheless, challenges also persist in the analysis. The limitation of model generalization is caused by the scarcity of data, 

especially in real-world operating conditions. Most of the models are trained using laboratory data that is not entirely 

representative of real-life EV issues. Besides that, model interpretability is an issue yet to be resolved to enable its adoption by 

industries (Wang et al., 2023). Nevertheless, the secondary data is exceptional in supporting the conclusion, that the ML-based 

methods are the radical revolution to optimize battery performance. 

To summarize the analysis: 

 The highest predictive results were obtained with deep learning (LSTM, CNN), especially in SOH and RUL prediction. 

 Hybrid models proved the most robust and the least error rate and they are the best to be used in real-time. 

 ML was offered for embedded systems with simple and faster computation by traditional ML (SVM, RF). 

 Reinforcement learning maximized energy usage and lifespan through automatic enhancement of the charging cycles. 

 ML combined with IoT based monitoring boosted continuous learning and maintenance prediction. 

Based on this extensive analysis of the secondary data, it can be concluded that the intersection of machine learning, data 

analytics, and smart control is the solution to the realization of intelligent and energy-efficient EV battery systems. The data is 

strongly pointing towards the fact that with the increase in the data availability and computer capabilities, ML-based optimization 

will become a central component of EV technologies of the next generation. 

Conclusion 

Machine learning (ML)-optimized battery performance of electric vehicles (EVs) is one of the most important technological 

changes in the field of automobiles and energy. According to this study, which is grounded on secondary data, the application of 

ML techniques has transformed the battery management systems (BMS) by facilitating precise estimation of system states, 

predictive maintenance and smart charging policies. The analysis of the findings of various research proves that algorithm models 

like Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and hybrid Artificial Neural Network-Kalman 
Filter (ANN-KF) models are always superior to traditional methodologies in predicting the State of Charge (SOC), State of Health 

(SOH), and Remaining Useful Life (RUL) of lithium-ion batteries. They are good models because they are able to capture non 

linear time dependent relationships which results in better fault diagnosis, temperature management and prediction of 

performance. 

The comparative discussion has shown that deep learning architectures are very accurate but demand a great deal of computer 

power. Hybrid and traditional ML models, in their turn, provide a more efficient/feasible compromise in the level of real-time 

applications. Reinforcement Learning (RL) methods have become especially promising in terms of optimization of charging 

protocols, minimization of energy waste, and improved efficiency and battery life. Moreover, through the addition of Internet of 
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Things (IoT) systems to ML, the continuous monitoring, predictive diagnostics, and adaptive control in EVs has been made 

possible, which is one step toward self-learning and self-regulating energy systems. 

Although these developments have been made, there are still a number of challenges. The fact that good and real-world quality 

data are limited hinders model extrapolations to other chemistries of different operating conditions of the battery. Also, model 

interpretability is a challenge to the mainstream application in industry, especially in safety-critical EV systems. The development 

of Explainable AI (XAI) frameworks however, can come up with possible remedies to these issues through enhancing 

transparency and trust. 

General, the results show that the adoption of ML techniques in EV battery systems does not only improve performance and 

reliability but also promotes environmental sustainability in terms of a long battery life, energy efficiency, and minimized material 

wastes. The study highlights that future studies need to aim at enhancing data sharing, intensifying model explanations, and 

coming up with lightweight ML models that can be deployed on-board. With the ongoing development of computational 

technologies, machine learning will be viewed as one of the keystones in the development of the intelligent, energy-efficient, and 

sustainable electric mobility. 
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