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Electric vehicles (EVs) have become among the foundations of green transportation
because of the fast global shift towards sustainable transportation. Nevertheless, the
problems of short battery life, extended charge durations, and unpredictable
performance in different conditions are impediments to the mass adoption of EVs.
Machine learning (ML) has therefore come in to overcome these shortcomings to
become a groundbreaking application in maximizing the battery performance of
electric vehicles. ML algorithms will be able to capture the nonlinear relationships
that are present in battery systems to predict the state of charge (SOC), state of
health (SOH), and remaining useful life (RUL) with great accuracy. In this paper, |
will discuss how the efficiency, reliability, and sustainability of EV batteries can be
improved using machine learning techniques, specifically neural network, support
vectors machine (SVM), and reinforcement learning. In the research, the secondary
data will be based on the literature available to study the predictive models and
optimization strategies that enhance battery management systems (BMS). Results
point to the fact that implementing ML in EV battery management leads to
alleviations in battery degradation, adaptive charging, and longer battery life. The
paper concludes that the optimization of the electric mobility solutions towards
energy efficiency, cost-effectiveness, and intelligent usage, is majorly driven by

Transportation. ML, and in line with global sustainability imperatives.
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Introduction

Electric vehicles (EVs) have become one of the most promising projects in the current transportation system due to the global
transition to sustainable energy solutions. As the world grows more concerned with issues of environmental pollution, carbon
emissions, and fossil fuel reliance, governments and players in the mobility industry are stepping up the process to electrify it.
Nevertheless, even with all the major improvements, the battery system is one of the key barriers to the popularity of EVs, as it
directly influences the performance of the vehicle, its range, reliability, and cost-effectiveness. The ability of EV batteries to
operate effectively is questioned by the presence of the following factors: temperature changes, discharge charges, aging, and
irregular driving conditions (Zhang et al., 2018). Consequently, the optimization of EV battery performance has become one of
the main centers of research, and machine learning (ML) is one of the enabling technologies in terms of obtaining higher
efficiency and predictability.

The optimization of battery performance is the process that predicts and controls the State of Charge (SOC), State of Health
(SOH), and Remaining Useful Life (RUL), which are three crucial parameters in the control of the safety, reliability, and
efficiency of the energy system of an EV (Hu et al., 2020). Conventional battery management systems (BMS) are based on
physics models which need a lot of parameter tuning, and are usually restricted to complex nonlinear dynamics. Conversely, the
ML models have the ability to learn and adjust to new trends and give real-time predictions based on data and are dynamically
capable of solving battery monitoring and optimization (Li et al., 2020). Neural networks, support vector regression, decision trees
and deep reinforcement learning have been shown to be useful in learning complex relationships between input signals and battery
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states. This is a major development in the technology of EV batteries as it is an evolution of the rule-based systems to data-driven
models.

Intelligent transportation is an important milestone that is achieved through the integration of ML in EV systems. The neural
networks, as an example, have the capability to replicate the nonlinear electrochemical processes to predict SOC and SOH
accurately even in dynamic driving conditions. The prediction of battery degradation has been performed with the support of the
support vector machines (SVMs) algorithm and the Gaussian process regression (GPR) algorithm, which provides real-time
feedback to the adaptive control strategies (Berecibar et al., 2016). Besides, autonomous battery control systems, based on
reinforcement learning (RL) techniques, are allowing to maximize charging and discharging cycles to maximize battery lifetime
and reduce energy wastage (Zhao et al., 2021). Such innovations do not only boost the performance of an individual battery but
also aid the sustainability and efficiency of cars powered by electricity in a network.

Regarding the industrial aspect, machine learning is not only essential because of its predictive capabilities in EV batteries but
also allows optimization at various levels, such as manufacturing, material design, and thermal management. As an example, ML
models may assist the manufacturer in creating electrodes with higher ion diffusion characteristics or forecasting the performance
decay of various battery chemistries like lithium-ion, solid-state, or sodium-ion battery (Arora and Singh, 2019). ML algorithms
are used in vehicle operations to predictive maintainability by detecting early faults in batteries, reduce working time, and
decrease expenses. This predictive ability has been realized by the increasing access to high-resolution battery data, which is
gathered by onboard sensors, lab tests and cloud-linked EV fleets. The optimisation of the batteries with the help of ML has
therefore turned into a multi-dimensional discipline that involves data science, materials engineering, and energy analytics.

Moreover, the importance of data analytics and the Internet of Things (IoT) as the means of assisting the optimization that is
driven by MLs cannot be overvalued. The new EVs have advanced sensors and telematics that produce large volumes of data
concerning temperature, voltage, current and pressure. This information is processed by machine learning algorithms to predict
battery behavior, which makes the energy distribution and load balancing more efficient (Zhao et al., 2021). This solution, along
with edge computing and cloud systems, can improve real-time battery health monitoring and decision-making and ensure safer
and more reliable car operation. The interplay between the 10T and ML and energy systems is certainly going to be more essential
to the concept of smart, autonomous vehicles as EV markets are being expanded.

Although the progress has been made, there are still difficulties. The data quality and availability is one of the leading problems.
ML models need huge and diverse data sets to be trained, and the unavailability of standardized data provided for models by the
various EV manufacturers disadvantages generalization of models (Li et al., 2020). Additionally, the complexity-versus-efficiency
dilemma of a model is another issue because embedded systems in cars usually lack the processing capabilities. The
interpretability of ML models, especially deep learning networks, is another issue that is frequently considered a problem as these
are treated as black boxes. Such a lack of transparency may increase barriers to trust and adoption, particularly when the
application of this is a safety-critical area like electric mobility. To cope with these fears and enhance the explainability of
predictions made using ML, researchers are currently paying attention to the explainable Al (XAl) (Hu et al., 2020).

Also, there are environmental and economic consequences associated with optimization of batteries. Increasing the battery
lifespan is not only a cost-reducing measure, but also a measure of environmental impact on the mining of such rare metals as
lithium and cobalt. Machine learning is a significant concept in sustainable management of resources as it can increase recycling
rates and forecast second-life applicability of the retired batteries in energy storage systems (Arora and Singh, 2019). Therefore,
the use of ML to optimize EV batteries follows the principles of the circular economy, according to which economic efficiency
and environmental sustainability should be encouraged.

To sum up, machine learning has a disruptive potential in improving the functionality, safety, and longevity of the battery in
electric vehicles. ML allows filling this gap between theory and practice in EV energy systems by facilitating intelligent
prediction, adaptive control and optimization. Further implementations of ML algorithms to manage EV batteries will help ensure
the achievement of intelligent transport infrastructure faster, which will be part of global sustainability and energy resilience
objectives. In the further parts of the paper, a review of the recent literature will be described, several ML approaches applied in
the optimization of a battery will be discussed, the methodology of the paper will be outlined, and the review of the findings
gained by use of secondary data sources will take place in order to give the comprehensive idea of the state-of-the-art approaches
to the given sphere of transformation.

Literature Review

Due to the fast development of electric vehicles (EVs), much attention has been paid to maximizing battery performance, which is
one of the key aspects of determining the range of the vehicle, charge efficiency, and the overall sustainability. Here, Machine
Learning (ML) has now become an enabling technology that can be used to improve battery management systems (BMS) by using
data-driven modeling and predictive control (Zhang et al., 2022). Contrary to conventional models of electrochemical or other
similar circuits, ML algorithms are able to model complex, nonlinear, and dynamic processes of lithium-ion batteries without the
need to know their underlying physical parameters (Li & Wang, 2021). This has made ML a foundation in the contemporary
research and development in BMS, allowing a more accurate prediction, diagnosis, and optimization of battery performance.
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State estimation (such as State of Charge, State of Health and Remaining Useful Life) is one of the best studied topics in this field.
The correct SOC and SOH estimation condition are needed to ensure the safe and effective work of EVs. Kalman filters or
Coulomb counting, which are the traditional ways to estimate the position, are prone to cumulative errors and heavily depend on
the accuracy of the battery parameters (Pan et al., 2020). Machine learning algorithms, especially Artificial Neural Networks
(ANN), Support Vector Machines (SVM), and ensemble algorithms, have demonstrated impressive results in terms of solving
these issues (Chen et al., 2021). Long-Short-Term Memory (LSTM) networks, which are deep learning architectures, may be
trained to learn time-varying relationships between battery cycling data, and predicts degradation trends and lifespan better (Liu et
al., 2021).

A study by Li et al. (2022) showed that LSTM models are more accurate by more than 15 percent compared to the conventional
ways of estimating battery SOH given changing operating conditions. Likewise, convolutional neural networks (CNNs) have been
used to identify spatial patterns in voltage and temperature data, which improves the fault detection and fault classification results
(Hannan et al., 2020). More robustness to noise and adjustment to real-world conditions In hybrid models, which combine ML
with physical modeling, including neural network-augmented Kalman filters, are further enhanced (Zhou and Zhang, 2021). All
these developments are a great leap towards real-time, adaptive, and correct BMS which can optimize itself autonomously.

Charging optimization is another new field of use of ML in EV batteries. One of the consumer requirements is fast charging,
which may, however, increase the degradation rate and shorten the battery life unless it is carefully controlled (Zheng et al., 2020).
Recently, the application of Reinforcement Learning (RL) was to develop smart charging policies, which consider the charge
speed, energy consumption, and duration (Li & Zhang, 2023). With the help of RL agents, internal temperature increase and stress
can be reduced to maximum by learning the best charging practices through repeated feedback and therefore the shelf life of the
battery will be prolonged. ML algorithms that are based on regression, i.e., Gradient Boosting and Random Forests, have been
applied to the prediction of optimal charge/discharge patterns to enable the scheduling of smart EV grids to be energy efficient
(Chen et al., 2022).

The other important aspect of EV battery optimization is thermal management, where temperature has a strong influence on
electrochemical reactions and safety (Hannan et al., 2021). To forecast temperature distributions in battery packs and identify
abnormal thermal events, ML methods, especially Gaussian Process Regression and Deep Neural Networks (DNN) have been
created (Zhang and Pan, 2022). These models are able to process massive data of temperature on real time, thereby providing their
capability to detect possible thermal runaway and implement preventive cooling measures. Multi-objective energy-density-power-
output-thermal-stability models based on ML are also applied (Wu et al., 2021). These strategies are essential towards coming up
with new generation battery packs that are both high performing and safe.

The combination of 10T and big data analytics with ML has also added to the range of predictive maintenance and remote
monitoring of EV systems. As 0T sensors are gathering steady volutes of voltage, current, and temperature data, the cloud-based
ML models are capable of carrying out predictive analytics to reveal precursors of failure or degradation (Zhou et al., 2023). The
loop of continuous learning is not only enhancing the stability of operations, but helps to make decisions based on the data in the
battery manufacturing and recycling. The combination of 10T and ML is slowly making the concept of the so-called self-learning
EVs with the adaptive energy management possible (Yao et al., 2021).

Regardless of these developments, the interpretability of using ML-based models of BMS continues to be one of the serious
limitations of adopting this technology. Deep learning models which are highly accurate are usually black boxes with little
explainability (Wang et al., 2023). Explainable Al (XAl) systems are under investigation to offer insights about the variables that
have the most impact on battery predictions, which can lead to increased trust and transparency in Al-based systems (Jiang and
Lin, 2022). It is especially important to make EV applications more interpretable when they are used in safety-critical domains, in
which misprediction due to model reason is potentially disastrous.

Besides technical optimization, ML-based battery management can help achieve sustainability and the circular economy. Correct
degradation forecasting will allow the use of used EV batteries in other tasks, like stationary energy storage (Liu and Chen, 2022).
Predictive analytics may be used to also ensure efficient recovery of materials during the recycling process, minimizing negative
effects on the environment and helping in the global decarbonization process (Pan et al., 2021). ML promotes an ecosystem made
up of closed-loops which is in line with the global sustainability objectives by allowing optimization of the life-cycle.

Nevertheless, there are still difficulties with data availability, generalization, and transferability of models between a battery
chemistry and chemistries, as well as between batch of producers (Hannan et al., 2023). Quality datasets are essential in the
training of ML models, but in most instances, battery data are proprietary and scattered in different industries. Additionally, it is
challenging to generalize models across the various EV platforms due to differences in temperature, charging, and conditions of
use. The possible solutions that are emerging are federated learning frameworks, models that are trained collaboratively over
distributed datasets without violating the privacy of the data (Zhao et al., 2022). These methods will increase the scalability and
flexibility of ML applications in the process of battery optimization to a great extent.

To summarize, existing literature highlights the potential of machine learning to transform the optimization of the performance of
an EV battery on various levels, such as state estimation, predictive maintenance, charging optimization, and sustainability. As

25



J-STAR: Journal of Social & Technological Advanced Research | 1(1), 23-31, 2025

impressive as the accuracy of the deep learning and the reinforcement learning models have been, their practical use requires
additional efforts in terms of explainability, computational efficiency, and data standardization. The moving forward of edge
computing, loT integration, and federated Al is also projected to be the driving force behind the next generation of intelligent,
adaptive, and sustainable EV battery systems.

Methodology

The current study adopts the secondary data-based research methodology to analyze the integration and effect of machine learning
(ML) techniques in maximizing the battery performance of electric vehicle (EV). Since battery research is a highly data-intensive
and technical study, secondary data will be used as a credible and exhaustive source of information that is based on the already
published works, datasets, and industry reports. The methodology that the current paper will utilize is based on systematic
literature review format where the descriptive, analytical, and comparative analysis will be used to synthesize the findings of
various sources.

Data Sources

The peer-reviewed journals, conference proceedings, white papers and technical reports published since 2018 and 2025 were the
sources of the secondary data used in this study. IEEE Xplore, ScienceDirect, SpringerLink, and MDPI were the databases that
were mainly used to obtain relevant publications. Inclusion criteria were based on the studies on the machine learning, deep
learning, and data-driven algorithms to manage the EV battery, with a particular focus on optimization of the State of Charge
(SOC), State of Health (SOH), Remaining Useful Life (RUL), and thermal control. Articles that solely covered the traditional
models of electrochemical or physics and did not apply theML were excluded. This filtering ensured that sources chosen were the
latest developments in Al-based energy management and predictive analytics.

Sixty-eight publications were identified which fit the inclusion criteria and were thematically analyzed. Organizational reports in
the form of industrial reports published by groups such as the International Energy Agency (IEA), Tesla, and Panasonic and
benchmark datasets such as the NASA Ames Battery Dataset and the Oxford Battery Degradation Dataset were also included as a
review and are often used in battery studies with ML (Li and Wang, 2021, Zhang et al., 2022). Both academic and industrial data
made the provided information comprehensive and gave a clear overview of the existing state and utility of the presented methods
of ML in the optimization of EV battery.

Data Analysis Techniques

The research intended to use qualitative content analysis method to draw important themes and insights of the literature. The
analytical procedure had a systematic way of identification, comparison and synthesis. To begin with, the relevant studies were
coded based on the type of ML technique applied, i.e., Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM),
Support Vector Machines (SVM), and Reinforcement Learning (RL). The results were then compared between the studies to
determine the similarities in the methods used, data used, and the optimization results obtained (Pan et al., 2020; Hannan et al.,
2021). Lastly, a summary of findings was carried out to establish trends in connection to model performance, interpretability, and
the challenges of their practical deployment.

To support the qualitative results, quantitative data were derived based on accuracy rates, error margins, and prediction times
which were obtained in secondary sources. Where possible, statistical measures like the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) were used to measure the performance of ML algorithms to predict battery behavior (Li et al., 2022).
The selected research papers in the form of comparative tables and graphs were reviewed to gain insight into the performance
trends in different operating conditions. The triangulation of evidence was possible in this multi-layered analysis and guaranteed
the reliability and validity of the synthesized results.

Reliability and Validity

The research was carried out in a credible manner to achieve its high level of reliability through cross-verification of the results of
numerous reliable sources and focusing on peer-reviewed publications. Only those studies that have a description of the
methodology and reproducible results and models that have been statistically validated were incorporated. Additionally, the focus
was placed on the recent publications to reflect on the current developments in the field. Cross-domain sources, i.e. computational
and engineering approaches were used to improve validity, thereby reducing the bias in favor of one approach, therefore providing
a grounded perspective of ML applications in battery optimization (Zhou and Zhang, 2021; Liu et al., 2021).

Seeing that the study involved the use of secondary data only, there was no primary experimentation or simulation. Rather, the
paper has synthesized empirical research on various experiments on ML and practical applications found in the literature. This
method is well aligned with the exploratory and analytical goals of the research that are expected to bring together theoretical
knowledge and empirical evidence to formulate a comprehensive knowledge of the technological tendencies in the present.

Ethical Considerations
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Since the study involved publicly available secondary data, no direct ethical risks were involved in the process of data collection
or analysis. Nevertheless, citations of all the sources have been done in a proper manner to uphold academic integrity as well as to
give credit to original contributors. The research is conducted based on the recommendations regarding ethical conduct of the
research by American Psychological Association (APA, 2020), which guarantees the transparency and responsible use of the data.

The general methodological scope may be summed up to include three primary steps:
« Data Collection - The secondary data will be collected by using reputable academic and industrial sources.
« Data Categorization and Coding - ML algorithms and performance, and optimization goals classification.

e Synthesizing and reviewing data - Comparative and thematic analysis to determine emerging trends, strengths and
challenges in the use of ML to optimize the performance of EV batteries.

The methodology is a secondary data methodology that offers sufficient basis on the analysis of the contribution of machine
learning towards efficiency, longevity, and sustainability in electric vehicle battery systems. The methodology also allows to
designate the future direction of research, especially to develop models with better interpretability, deal with the lack of data, and
make the management of the battery adaptive to Al in real time.

Data Analysis

The analysis of data to be used in this study will be on secondary information obtained through available literature, datasets, and
industrial reports on the use of machine learning (ML) methods in optimization of battery performance in an electric vehicle (EV).
This analysis is aimed at comparing the performance of various ML models in estimating the major parameters of the battery
including State of Charge (SOC), State of Health (SOH), Remaining Useful Life (RUL), and thermal behavior. By means of the
synthesis of the published experimental results, this part will point to the performance trends, the most efficient algorithms, and
the issues that influence their practical realization.

Summary of the Data Obtained

The analyzed data came out of 68 research papers published in 2018-2025. These were empirical research studies, simulation
experiments and model validation reports of academic and industrial sources like IEEE, Elsevier and MDPI. The chosen
information was based on ML algorithms dedicated to the management of EV batteries, which are mostly lithium-ion chemistry as
the main approach in the EV market. The key parameters were obtained; type of algorithm, input features (voltage, current,
temperature, number of cycles), performance (RMSE, MAE, accuracy), and optimization targets (prediction accuracy, energy
efficiency, degradation estimation).

Table 1 presents a synthesized summary of the data collected from key representative studies comparing the performance of
different ML algorithms.

Table 1: Summary of Secondary Data on ML Algorithms for EV Battery Optimization

Study ML Optimization | Dataset Used Performance Key Finding
Technique Focus Metric (Accuracy
/ RMSE)
Li & Wang | ANN SOC Estimation | NASA 97.5% Accuracy ANN  model effectively
(2021) Battery estimated SOC with
Dataset minimal error under
varying load.
Zhang et al. | LSTM SOH Prediction Oxford RMSE =0.018 LSTM model predicted
(2022) Battery degradation patterns
Dataset accurately using time-series
data.
Chen et al. | SVM RUL Estimation | Self-collected | MAE =1.2 SVM performed well for
(2021) Li-ion Data medium-sized datasets with
lower computational
demand.
Pan et al. | CNN Fault Diagnosis | NASA 98.2% Accuracy CNN efficiently detected
(2020) Battery early fault signatures in
Dataset battery cells.
Hannan et al. | Hybrid SOC & SOH | NASA & | RMSE =0.014 Hybrid model improved
(2021) ANN + | Estimation Panasonic stability and noise
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Kalman Data resistance.
Filter
Zhou & | Reinforcem | Charging Simulation Efficiency Gain = | RL optimized charging
Zhang (2021) | ent Optimization Data 12% protocols by  reducing
Learning overcharge-induced
(RL) degradation.
Liu et al. | DNN Thermal Real-Time MAE = 1.1°C DNN predicted internal
(2021) Management Battery Data temperature rise
effectively, improving
cooling control.
Wang et al. | XAl-Based | Interpretability | Industrial 96.8% Accuracy XAl framework enhanced
(2023) LSTM & Prediction Battery Logs transparency and trust in
ML-based predictions.

Comparative Analysis of Algorithmic Performance

Table 1 provides the comparison of algorithms to reveal that deep learning techniques, in particular, LSTM and CNN, tend to be
more accurate and reliable in prediction. SOH estimation was lowest in the LSTM networks (0.018) because they were able to
learn time dependencies within battery cycles (Zhang et al., 2022). In the same way, CNN models also showed a better accuracy
(98.2) in detecting degradation patterns based on voltage and temperature maps, which is very effective in fault detection (Pan et
al., 2020).

Hybrid models that were developed like ANN and Kalman Filters had strong performance since they combined data-driven
learning and model-based estimates. The hybrid design minimized the sensitivity of noises, and it was also applicable in real-
world EV scenarios where the sensor data are usually noisy and incomplete (Hannan et al., 2021). Albeit being a relatively novel
approach in this domain, Re reinforcement Learning (RL) showed great prospects in optimization of charging performance, with a
12% increase in energy consumption (Zhou and Zhang, 2021).

Functional ML models such as SVMs were still competitive when working with smaller datasets or fewer computing resources.
To illustrate, SVM made a mean absolute error (MAE) of 1.2 in estimating RUL and its inference speed was rapid (Chen et al.,
2021). It implies that more basic models can also be useful on-board applications that have limited hardware capacity.

Optimization Objectives Trends
The four key trends in optimization of EV battery management presented in the literature that include the use of ML are:

e Accuracy Improvement - LSTM and CNN models showed great advancement in the forecasting of SOC, SOH, and
RUL.

« Energy Efficiency - The RL and gradient boosting algorithms had been optimized to maximize the charge cycles to
increase the battery life.

e  Thermal Stability - DNN-based systems provided an improved forecast of temperature and control in high-load mode.

o Interpretability and Transparency Explainable Al (XAIl) models like LIME and SHAP have recently been combined to
understand the model decision and make decisions that are safe to use (Wang et al., 2023).

The cross-study comparison showed that the addition of ML based optimization to the loT-enabled monitoring to an even greater
degree facilitates real-time flexibility, which makes possible predictive maintenance. It is also consistent with the results of Yao et
al. (2021), who noted that Al-based BMS systems decreased the downtime by 18 per cent in relation to traditional methods.

Statistical Synthesis

Based on the gathered data, the mean predictive accuracy of all the ML models was above 95, and the mean values of RMSE were
0.014 to 0.025 of SOC and SOH predictions. These values suggest that the results are always improved significantly with a poor
RMSE value (above 0.05) when using traditional models (Li and Wang, 2021). Also the models which received a hybrid learning
structure showed a 10-15 percent more robustness in the face of unknown data, indicating a higher ability to generalize.

Table 2 summarizes the aggregated statistical performance of different model categories analyzed in the literature.

Table 2: Aggregated Statistical Summary of ML Model Performance

| Model Type | Average Accuracy | Average | Computational | Real-Time Feasibility |
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(%) RMSE Demand
ANN 96.5 0.022 Moderate High
CNN 98.2 0.019 High Moderate
LSTM 97.8 0.018 High Moderate
SVM 94.3 0.025 Low High
Hybrid ANN + 97.1 0.014 Moderate High
KF
RL 95.2 N/A High Moderate

The statistical synthesis shows that although deep learning algorithms are more accurate, their complexity is a challenge when
applying them in embedded systems. Hybrid and traditional ML achieves a more reasonable balance between accuracy and
processing efficiency and is therefore more applicable to onboard BMS (Liu et al., 2021). Although not fully developed yet,
Reinforcement Learning models are finding more and more applications in adaptive charging, as well as in operational
scheduling, because it is a self-learning model (Zhou and Zhang, 2021).

Meaning and Reflexivity
The general direction of the secondary data implies that ML techniques can lead to three major outcomes:

o Improved Predictive Performance: ML models are much more efficient than rule-based estimators in predicting the
battery parameters and patterns of failures.

e« Enhanced Operational Safety: CNN and LSTM models can identify faults early to avert the overcharging and
overheating cases thus increasing safety (Pan et al., 2020).

e Sustainability and Lifespan Extension: Optimization algorithms are used to reduce the rates of degradation, which
increases the service life of a battery and decreases the frequency of replacement, which is in line with sustainable
energy goals (Hannan et al., 2023).

Nevertheless, challenges also persist in the analysis. The limitation of model generalization is caused by the scarcity of data,
especially in real-world operating conditions. Most of the models are trained using laboratory data that is not entirely
representative of real-life EV issues. Besides that, model interpretability is an issue yet to be resolved to enable its adoption by
industries (Wang et al., 2023). Nevertheless, the secondary data is exceptional in supporting the conclusion, that the ML-based
methods are the radical revolution to optimize battery performance.

To summarize the analysis:

The highest predictive results were obtained with deep learning (LSTM, CNN), especially in SOH and RUL prediction.
Hybrid models proved the most robust and the least error rate and they are the best to be used in real-time.

ML was offered for embedded systems with simple and faster computation by traditional ML (SVM, RF).
Reinforcement learning maximized energy usage and lifespan through automatic enhancement of the charging cycles.
ML combined with 10T based monitoring boosted continuous learning and maintenance prediction.

Based on this extensive analysis of the secondary data, it can be concluded that the intersection of machine learning, data
analytics, and smart control is the solution to the realization of intelligent and energy-efficient EV battery systems. The data is
strongly pointing towards the fact that with the increase in the data availability and computer capabilities, ML-based optimization
will become a central component of EV technologies of the next generation.

Conclusion

Machine learning (ML)-optimized battery performance of electric vehicles (EVs) is one of the most important technological
changes in the field of automobiles and energy. According to this study, which is grounded on secondary data, the application of
ML techniques has transformed the battery management systems (BMS) by facilitating precise estimation of system states,
predictive maintenance and smart charging policies. The analysis of the findings of various research proves that algorithm models
like Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and hybrid Artificial Neural Network-Kalman
Filter (ANN-KF) models are always superior to traditional methodologies in predicting the State of Charge (SOC), State of Health
(SOH), and Remaining Useful Life (RUL) of lithium-ion batteries. They are good models because they are able to capture non
linear time dependent relationships which results in better fault diagnosis, temperature management and prediction of
performance.

The comparative discussion has shown that deep learning architectures are very accurate but demand a great deal of computer
power. Hybrid and traditional ML models, in their turn, provide a more efficient/feasible compromise in the level of real-time
applications. Reinforcement Learning (RL) methods have become especially promising in terms of optimization of charging
protocols, minimization of energy waste, and improved efficiency and battery life. Moreover, through the addition of Internet of
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Things (loT) systems to ML, the continuous monitoring, predictive diagnostics, and adaptive control in EVs has been made
possible, which is one step toward self-learning and self-regulating energy systems.

Although these developments have been made, there are still a number of challenges. The fact that good and real-world quality
data are limited hinders model extrapolations to other chemistries of different operating conditions of the battery. Also, model
interpretability is a challenge to the mainstream application in industry, especially in safety-critical EV systems. The development
of Explainable Al (XAIl) frameworks however, can come up with possible remedies to these issues through enhancing
transparency and trust.

General, the results show that the adoption of ML techniques in EV battery systems does not only improve performance and
reliability but also promotes environmental sustainability in terms of a long battery life, energy efficiency, and minimized material
wastes. The study highlights that future studies need to aim at enhancing data sharing, intensifying model explanations, and
coming up with lightweight ML models that can be deployed on-board. With the ongoing development of computational
technologies, machine learning will be viewed as one of the keystones in the development of the intelligent, energy-efficient, and
sustainable electric mobility.
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