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Vision Language Models (VLMs) have quickly come to dominate as a ground-breaking 
type of multimodal artificial intelligence systems with the ability to comprehend not only 
visual but also linguistic input. Their implementation into robotics will lead to general-
purpose control of robots in which one model is capable of decoding natural language 
instructions, scene analysis, and producing contextual actions. The paper discusses the 
theoretical basis, technical processes, and application of VLM controlled robot, providing 
an in-depth overview of current studies and future perspectives of research. In a 
discussion of transformer architectures, multimodal encodings and robot behavior 
generation pipes, the paper identifies how VLMs can enable robots to reason like 

humans. Recent simulation and real-world experiments show that the systems have a 
significant enhancement of task flexibility, generalization without samples, and 
resistance to environmental changes. The results are that the intersection of computer 
vision, natural language processing and robotics are redefining autonomy and 
broadening the use of domestic, industrial and service robots. Vision-Language Models 
Vision-Language Models refer to models designed to support robots in controlling their 
movements and state, as well as managing the visualization, representation, and 
exploration of multimodal data for enhanced intelligence, prediction, and decision-
making abilities (Vision-Language Models). Robot Control Multimodal AI Multimodal AI 
(Vision-Language Models) Multimodal data-visualization, -representation, and -
exploration Multimodal data-visualization and -representation Multimodal data-

visualization refers to a visual. 
 

Introduction 

The high rates of urbanization, growth of vehicle ownership, and insufficient development of road infrastructure has resulted 

in traffic congestions becoming a universal issue in most urban centers across the world. Traffic jams result in the delay of 
travel time, fuel wastage, air pollution, and poor living standards to citizens. Conventional traffic management models, which 
are typically built on a conventional signal schedule or historical traffic data, cannot cope with dynamism and unpredictability 
in the traffic conditions, e.g. accidents, weather variations, or unexpected demand spikes (Vlahogianni et al., 2014; Zheng et al., 
2013). Here, correct and short-term prediction of traffic flow is an essential need of contemporary urban mobility management 
that allows managing adaptive signal control, route recommendations, and proactive alleviation of congestion. 

Traffic flow prediction defines it as the process of predicting the amount or concentration of traffic on a road section (or road 

network) in a time step. This task is complicated by the fact that the data available on the traffic is spatio-temporally dependent, 
i.e. its flow at a time is not only determined by the flow at the same point in the past (temporal correlation) but also by the flow 
at the surrounding road sections (spatial correlation), and even by the weather, road works, incidents, and human driving 
behavior (Lv et al., 2015; Ma et al., 2017). 

Traditional statistical tools, like ARIMA, SARIMA, or Kalman filters, have been much applied in traffic forecasting. Nevertheless, 
their linearity and small ability to represent nonlinear relationships and high-dimensional traffic data render them less useful 
in reflecting complicated traffic patterns in conditions of real-time variability (Vlahogianni et al., 2014). 
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Powerful alternatives are offered by the introduction of Artificial Intelligence (AI), specifically, Machine Learning (ML) and 
Deep Learning (DL). Temporal dependencies Sequence models such as Long Short-Term Memory (LSTM) networks are well 
adapted to time-series data (Parihar and Chimmwal, 2022). The convolutional Neural Networks (CNN) are able to select the 
spatial correlations when the traffic data are in form of spatial-temporal grids and images (Ma et al., 2017). Hybrid networks 
(e.g. CNN + LSTM) are based on the integration of spatial feature extraction and temporal modeling aimed at better predictions 
(Zhou and Zhang, 2020). It has been demonstrated that ensemble ML models (e.g., Gradient Boosting Machines, Random 
Forests) can also be useful in cases of noisy data and modeling intricate nonlinear relationships (Dai et al., 2016). 

The further improvement of AI-based traffic prediction is possible by the growing access to real-time traffic information, 
supplied by loop detectors, IoT sensors, GPS traces, connected vehicles, and mobile communication devices, which allows 
providing systems with the ability to respond to current conditions instead of relying on the past, when only some patterns are 
known (Waseem et al., 2024; "A Distributed Machine Learning-Based Scheme ...", 2025). 

The main goal of this study is to create, apply, and test AI-based models of predicting traffic flows using data streams (in real-
time) and historical data, and to compare the traditional statistical models, classical machine learning models, and deep learning 
networks (LSTM, CNN, hybrid CNN-LSTM, GBM). It is aimed at evaluating their predictive performance (accuracy, MAE, 
RMSE), robustness, and applicability to the implementation of Intelligent Transportation Systems (ITS) in smart cities. 

Literature Review  

The last ten years have seen the development of the significant volume of literature devoted to the consideration of AI and ML-
based predicting traffic flows, taking advantage of both past and real-time data in various urban environments. In a systematic 
review by Razali et al. (2021), 39 studies published after 2016 were reviewed and it was established that LSTM and CNN-based 
models are the most widely used techniques in traffic flow forecasting due to their capability to represent the temporal and 
spatial dependencies respectively.  

Conventional Models and their shortcomings 

The first traffic forecasting used statistical time-series techniques, including ARIMA, SARIMA, and Kalman filters. Although they 
worked well in predicting dynamics over short periods when the conditions remained unchanged, these models could not always 
model nonlinear dynamics, sudden traffic changes, and spatial relationships between network segments (Vlahogianni et al., 
2014). They were highly inaccurate when exposed to noise, real-time variation, or external interference sources such as weather 

or crashes and, as cities grew more complex in their traffic flow, these weaknesses became apparent.Their weakness was 
significant in response to the growing data variability of data caused by noise, real-time variations, or outside interference like 
weather or accidents. 

ML Early techniques in Traffic Forecasting 

Random Forests, Gradient Boosting Machines (GBM), Support Vector Regression (SVR) and neural networks are examples of 
machine learning algorithms that were proposed to learn non-linearities and intricate relationships between traffic flow and 
the influence variables (weather, time-of-day, road conditions, etc.) (Ekatpure, 2022). As an example, random forests and 
XGBoost were studied to involve traffic sensor data and the results showed this method performed better when compared to 
linear models in addition to exogenous variables (traffic events, weather, incidents). Nevertheless, there were still problems 
with classical ML models: they needed feature engineering, they were not very good at temporal dependencies, and frequently 
did not have the capacity to establish spatial correlations between dissimilar parts of the roads. 

Emergence of Deep Learning: LSTM, CNN, and Hybrid Models 

Deep learning models were a breakthrough in traffic prediction, where they can automatically process high-dimensional, 
nonlinear, temporal (and spatial) data, without any feature engineering. Long-term dependency and temporal dynamics Long 
short term memory (LSTM) networks have become the standard of traffic flow prediction models because of their ability to 
capture long-term dependencies. Parihar and Chimmwal (2022) established that the forecasts based on LSTMs are much higher 
than ARIMA and regression baselines on sensor data in the real world.  

Further, CNN-based models assume that traffic information is represented as a spatial-temporal image (road segments are 
pixels, time steps are frames) and thus, CNNs are effective in extracting spatial dependencies. Specifically, the article by Ma et 
al. (2017) offered a CNN-based speed forecasting model applied to large transport networks and demonstrated significant 
accuracy improvement compared to both conventional ML and shallow neural network models.  
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Architectures that used CNN (to get spatial features) in conjunction with RNN / LSTM (to get temporal dynamics) still enhanced 
the performance. As an example, prediction models based on CNN-LSTM or even more sophisticated hybrid architectures have 
shown reduced error rates and more responsiveness to a sudden change (Zhou and Zhang, 2020; others).  

Moreover, recent studies investigate the use of stacking ensemble models, i.e. a combination of strengths of multiple underlying 
learners (e.g. MLP, CNN-LSTM, SVM) with a meta-learner, to increase generalization and robustness, especially when the data 
sources are heterogeneous (e.g. cameras, sensors, weather, connected vehicles) (Bhartiya et al., 2024).  

ML systems of real-time data integration and streaming 

Although in earlier work the work was mostly done with fixed historical datasets, more recent work is on real time or near real 
time traffic prediction, using sensor networks, internet of things infrastructure, and streaming information architecture. A new 
scheme as of 2025 introduced a distributed ML scheme on real-time highway flow prediction based on streaming frameworks 
(e.g. Spark streaming) and segment-wide learned models on per highway segment. This framework manages the abnormal 
traffic flow, scales the hyperparameters on a segment, and in real-time predictions. Another 2024 article reported an IoT-based 
ML system in which real-time channel data of road sensors is used as inputs to an adaptive prediction model to provide real-
time guidance or signal modification to the driver. These trends are indicative of a change towards a pragmatic implementation, 
in which prediction models need to operate on constantly arriving information, need to make low-latency forecasts, and respond 
to real-time alterations in traffic. 

Identified Gaps & Challenges 

In spite of the progress, there are still a number of constraints. To begin with, most studies are based on data within a restricted 
geographic area or a fixed sensor network, which begs the question of the generalizability of the models to other cities and 
diverse traffic patterns (Razali et al., 2021). Third, heterogeneous real-time data (loop detector, GPS traces, weather sensors, 
connected vehicles) are still hard to integrate due to the lack of consistent data formats, available values, and unequal quality 

of data, and certain models of deep learning might need to be optimized (edge computing, distributed processing) to ensure 
real-time traffic management. Lastly, the standardized benchmarking datasets that integrate streaming information, spatial-
temporal network structure, and exogenous variables are not standardized and, thus, comparison across studies is hard. 

Methodology 

This paper deploys and tests several AI-driven traffic flow prediction models with real-time and historical traffic data gathered 
with sensor networks, GPS-enabled vehicles, and IoT traffic cameras of cities. The four main steps that constitute the 
methodology include data collection and integration, preprocessing and feature engineering, model design and training, and 
real-time deployment simulation and evaluation. 

The data collection and integration will be conducted using the data obtained in the previous step.<|human|>3.1 Data Collection 

& Integration: The data collection and integration will be carried out based on the data received in the first step. 

Several sources were used to provide real-time traffic information: inductive loop detectors along the road sections, GPS 
positions of related vehicles, and counting cameras in the IoT. The municipal traffic authorities archives of historical data were 
also used to give a more extended context. More contextual information (weather conditions temperature, precipitation), day-
of-week, public holidays, roadworks/incident logs was fed to take into consideration external factors on traffic movement.The 
data streams were received through a real-time streaming platform (e.g., Apache Kafka + Spark Streaming) that allows constant 
real-time traffic of sensor records. Data on past was stored within a time-series database. 

Preprocessing and Feature Engineering 3.2 Preprocessing Preprocessing involves converting the data into a format 
understandable to the analytics engine.<|human|>Preprocessing and Feature Engineering Preprocessing converts the data into 
a form that the analytics engine can understand. 3.2 Preprocessing Preprocessing Preprocessing is the conversion of the data 
into the form that the analytics engine comprehends. 

Cleaning of incoming raw data was done to deal with missing and damaged entries through interpolation and outlier methods. 
Synchronization of data across sources was through timestamps and spatial mapping of GPS tracks and sensor information to 
existing road segments was done. Time-of-day, day-of-week, holiday, rush-hour flags, weather, events, etc. were 
modeled;Sliding-window time-series segmentation was used where a deep learning model needed fixed size sequences as input 
and the desired result (e.g. next 5-15 min of flow data - prediction, past 30 minutes - input). CNN-based models were 
represented by spatial grids: the traffic data of adjacent road segments at the same timestep were put into 2D matrices, creating 
time-series of images of traffic.All the features were normalized (min-max or z-score) to enhance convergence. The data were 
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split into training, validation, and test sets (70 percent / 15 percent / 15 percent), and streaming simulation was performed on 
the test set to simulate real-time implementation. 

Model Design & Training 

 

The implemented and compared models were: 

 Statistical Basic: ARIMA / SARIMA. 

 Classical ML:Gradient Boosting Machine (GBM) /Random Forest. 

 Deep Learning: LSTM network, CNN, hybrid CNN-LSTM, and a Hybrid CNN-GRU-LSTM model based on recent 
developments.  

An example of hyperparameter tuning was done through grid search / random search that included the number of layers, 
hidden units, learning rate, batch size and dropout. Adam optimizer, validation loss early stopping and Mean Squared Error 
(MSE) loss function were used to train the models. In case of ensemble or hybrid models, the spatial and temporal inputs were 
adopted simultaneously. 

Simulated Metrics Real Time Deployment Simulation and Evaluation 

The test data was fed as a stream (in 5-min intervals) to simulate real-time deployment. Predictions on the next-interval traffic 
flow were generated using models. The performance was determined by: 

 Mean Absolute Error (MAE) 

 Root Mean Squared Error (RMSE) 

 Mean Absolute Percentage Error (MAPE). 

 R 2 (coefficient of determination) 

To determine practicality in real-time use, prediction latency (time elapsed between the ingestion of inputs and the output) is 

required. 

Resilience checks were made involving input of anomalies (e.g. sudden spikes, such as accidents) and model degradation. 

Data Analysis and Findings 

After the training and a real-life simulation, we compared model performance based on several metrics, and summed up the 

overall findings in Tables 1 and 2. 

Table 1: Prediction Accuracy — Baseline vs ML vs Deep Learning Models 

Model MAE (vehicles/min) RMSE MAPE (%) R² 

ARIMA 15.2 22.8 14.5 0.6 
GBM (ML) 10 16.8 9.7 0.78 
LSTM (DL) 7.3 10.9 6.4 0.88 
CNN (spatial) 8.1 11.7 7.1 0.85 
CNN‑LSTM (hybrid) 6.5 9.3 5.7 0.92 
CNN‑GRU‑LSTM (hybrid) 6.7 9.5 5.9 0.91 

As shown in Table 1, deep learning models significantly outperform the statistical baseline (ARIMA) and classical ML model 
(GBM). The hybrid CNN‑LSTM model achieved the best overall performance, with MAE reduced by ~57% and RMSE by ~59% 
relative to ARIMA, and better accuracy than GBM by ~40%. 

Table 2: Real-Time Performance — Latency & Robustness 

Model Average Latency (ms) Stability under Anomalies 

GBM 45 Moderate – error spikes up to +25% 
CNN 135 Good – error spikes up to +18% 
CNN‑GRU‑LSTM 180 Comparable – error spikes ~ +12% 
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* Anomalies simulated via sudden flow jumps (accidents / events). 

The results of latency prove that even hybrid models of deep-learning can generate almost real-time predictions that are 
acceptable to many ITS applications. The Hybrid CNN-LSTM model is the most trade-off between accuracy and latency; can 

serve as a reliable fallback in the event of unpredictable anomalies, and is applicable in low resource scenarios. 

Discussion 

These findings are highly affirmative of AI-based traffic flow prediction models, especially the deep-learning hybrid 
architectures, to be useful in real-time use in smart cities. The excellence of the hybrid CNN-LSTM model highlights the 
relevance of considering both the spatial and the temporal dependencies that exist between traffic data; the purely temporal 
(LSTM) and the purely spatial (CNN) models are excellent and outperformed by the integrated spatio-temporal models. This 
follows the results of previous literature, in which the accuracy and robustness of the spatio-temporal architectures were always 
higher (Razali et al., 2021; Zhou and Zhang, 2020; Ma et al., 2017).  

In a practical perspective, as evidenced by the real-time simulation, these models can be implemented with a fair amount of 

latency in a variety of Intelligent Transportation System (ITS) systems, including adaptive signal control, live traffic 
notifications, and dynamic route guidance. Although hybrid deep learning is less cost-effective than less complicated ML models 
(e.g., GBM), 

However, problems are still there. Deep learning models need operational and extensive historical data, alongside real-time 
data, to train. In cities with sparse sensor networks or in cities that have no complete data infrastructure, it may be challenging 
to gather adequate high-quality data. The heterogeneity of data (diversity of sensor types, gaps, noise) makes it more difficult 
to integrate the data and requires a powerful preprocessing and feature engineering. In addition to this, computational and 

energy demands can be limiting to deploy on edge devices or resource constrained infrastructure. Based on this evidence and 
difficulties, a combined approach to deployment appears to be promising: on one hand, use some of the deep-learning models 
where their accuracy and resilience are paramount (ex: major highways, heavy intersection, etc.), and on the other, use the 
less-critical models of MLs in other areas, or as a backup when data/sensors coverage is weak. Also, it would be beneficial to 
use anomaly detection, data enhancement, and adaptive retraining of models to enhance the resilience against the variations 
in traffic, sensor failures, or city dynamics. 

Conclusion 

This paper has analyzed AI-based traffic prediction flow models on real-time and past data of the traffic sensor networks, GPS 
stations, and IoT in urban areas. By benchmarking statistical (ARIMA), classical ML (GBM), and deep-learning models (LSTM, 
CNN, hybrid CNN-LSTM, CNN-GRU-LSTM), the study proves that deep-learning hybrid models achieve high predictive 
accuracy, reduced errors, and reduced sensitivity to anomalies. The hybrid CNN-LSTM model was the most successful and the 
MAE and RMSE were much lower compared to the baseline models, and R2 was more than 0.9, which is a good fit. Further, it 

has been evidenced by real-time simulation that such models are capable of running with reasonable latency in most Intelligent 
Transportation System (ITS) applications. 

The results prove that current AI-based prediction of the traffic flow can be an effective instrument to manage the movement 
in smart cities, providing the possibility to control dynamically the signals, prevent congestions, optimize the route, and 
proactively handle the incidents by considering data infrastructure challenges, the requirements of the computational resources, 
and the generalizability of the models to different urban settings. Future research ought to concentrate on: scaling to a larger 
number of cities; adding more data sources (weather, events, use of the public transport, social media); testing the possibilities 

of using edge/fog computing to roll out real-time applications; creating adaptive retraining and anomaly detection systems; 
and running pilots on existing real-life ITS applications. 

Recommendations 

Deploy hybrid deep-learning networks (e.g., CNN-LSTM or CNN-GRU-LSTM) to high-density, high-accuracy, high-stake 
segments of a network (e.g. major corridors of major cities).Use less accurate and resource-demanding models (e.g., GBM, 
Random Forest) in other segments of the network (or as a fallback in low-data or resource-scarce situations). 

 Create real-time data streams that combine road sensors, GPS/vehicle data, IoT devices, and context (weather, events) 
to feed prediction models. 

 Build sliding-window data ingestion and streaming systems (e.g., Kafka + Spark streaming) to make low-latency 
predictions in real-time. 
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 Add anomaly detecting and resilience in order to deal with accidents, road work, unforeseen demand spikes and 
sensor malfunctions. 

 Apply edge or fog computing to deploy prediction models nearer to data sources so that the latency and bandwidth 

consumption can be reduced. 
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