ComputeX - Journal of Emerging Technology & Applied Science | 1 01-07, 202

DOLI: https://doi.org
ComputeX - Journal of Emerging Technology

& Applied Science

Journal homepage: https://rjsaonline.org/index.php/ComputeX

AlI-Based Traffic Flow Prediction Models Using Real-Time Data
Nagqvi syed Ali Jafar"

'BS Al scholar, Harbin Engineering University

Email: alijafarnagvi22@gmail.com
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Introduction

The high rates of urbanization, growth of vehicle ownership, and insufficient development of road infrastructure has resulted
in traffic congestions becoming a universal issue in most urban centers across the world. Traffic jams result in the delay of
travel time, fuel wastage, air pollution, and poor living standards to citizens. Conventional traffic management models, which
are typically built on a conventional signal schedule or historical traffic data, cannot cope with dynamism and unpredictability
in the traffic conditions, e.g. accidents, weather variations, or unexpected demand spikes (Vlahogianni et al., 2014; Zheng et al.,
2013). Here, correct and short-term prediction of traffic flow is an essential need of contemporary urban mobility management
that allows managing adaptive signal control, route recommendations, and proactive alleviation of congestion.

Traffic flow prediction defines it as the process of predicting the amount or concentration of traffic on a road section (or road
network) in a time step. This task is complicated by the fact that the data available on the traffic is spatio-temporally dependent,
i.e. its flow at a time is not only determined by the flow at the same point in the past (temporal correlation) but also by the flow
at the surrounding road sections (spatial correlation), and even by the weather, road works, incidents, and human driving
behavior (Lv et al., 2015; Ma et al., 2017).

Traditional statistical tools, like ARIMA, SARIMA, or Kalman filters, have been much applied in traffic forecasting. Nevertheless,
their linearity and small ability to represent nonlinear relationships and high-dimensional traffic data render them less useful
in reflecting complicated traffic patterns in conditions of real-time variability (Vlahogianni et al., 2014).
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Powerful alternatives are offered by the introduction of Artificial Intelligence (AI), specifically, Machine Learning (ML) and
Deep Learning (DL). Temporal dependencies Sequence models such as Long Short-Term Memory (LSTM) networks are well
adapted to time-series data (Parihar and Chimmwal, 2022). The convolutional Neural Networks (CNN) are able to select the
spatial correlations when the traffic data are in form of spatial-temporal grids and images (Ma et al., 2017). Hybrid networks
(e.g. CNN + LSTM) are based on the integration of spatial feature extraction and temporal modeling aimed at better predictions
(Zhou and Zhang, 2020). It has been demonstrated that ensemble ML models (e.g., Gradient Boosting Machines, Random
Forests) can also be useful in cases of noisy data and modeling intricate nonlinear relationships (Dai et al., 2016).

The further improvement of Al-based traffic prediction is possible by the growing access to real-time traffic information,
supplied by loop detectors, IoT sensors, GPS traces, connected vehicles, and mobile communication devices, which allows
providing systems with the ability to respond to current conditions instead of relying on the past, when only some patterns are
known (Waseem et al., 2024; "A Distributed Machine Learning-Based Scheme ...", 2025).

The main goal of this study is to create, apply, and test Al-based models of predicting traffic flows using data streams (in real-
time) and historical data, and to compare the traditional statistical models, classical machine learning models, and deep learning
networks (LSTM, CNN, hybrid CNN-LSTM, GBM). It is aimed at evaluating their predictive performance (accuracy, MAE,
RMSE), robustness, and applicability to the implementation of Intelligent Transportation Systems (ITS) in smart cities.

Literature Review

The last ten years have seen the development of the significant volume of literature devoted to the consideration of Al and ML-
based predicting traffic flows, taking advantage of both past and real-time data in various urban environments. In a systematic
review by Razali et al. (2021), 39 studies published after 2016 were reviewed and it was established that LSTM and CNN-based
models are the most widely used techniques in traffic flow forecasting due to their capability to represent the temporal and
spatial dependencies respectively.

Conventional Models and their shortcomings

The first traffic forecasting used statistical time-series techniques, including ARIMA, SARIMA, and Kalman filters. Although they
worked well in predicting dynamics over short periods when the conditions remained unchanged, these models could not always
model nonlinear dynamics, sudden traffic changes, and spatial relationships between network segments (Vlahogianni et al.,
2014). They were highly inaccurate when exposed to noise, real-time variation, or external interference sources such as weather
or crashes and, as cities grew more complex in their traffic flow, these weaknesses became apparent.Their weakness was
significant in response to the growing data variability of data caused by noise, real-time variations, or outside interference like
weather or accidents.

ML Early techniques in Traffic Forecasting

Random Forests, Gradient Boosting Machines (GBM), Support Vector Regression (SVR) and neural networks are examples of
machine learning algorithms that were proposed to learn non-linearities and intricate relationships between traffic flow and
the influence variables (weather, time-of-day, road conditions, etc.) (Ekatpure, 2022). As an example, random forests and
XGBoost were studied to involve traffic sensor data and the results showed this method performed better when compared to
linear models in addition to exogenous variables (traffic events, weather, incidents). Nevertheless, there were still problems
with classical ML models: they needed feature engineering, they were not very good at temporal dependencies, and frequently
did not have the capacity to establish spatial correlations between dissimilar parts of the roads.

Emergence of Deep Learning: LSTM, CNN, and Hybrid Models

Deep learning models were a breakthrough in traffic prediction, where they can automatically process high-dimensional,
nonlinear, temporal (and spatial) data, without any feature engineering. Long-term dependency and temporal dynamics Long
short term memory (LSTM) networks have become the standard of traffic flow prediction models because of their ability to
capture long-term dependencies. Parihar and Chimmwal (2022) established that the forecasts based on LSTMs are much higher
than ARIMA and regression baselines on sensor data in the real world.

Further, CNN-based models assume that traffic information is represented as a spatial-temporal image (road segments are
pixels, time steps are frames) and thus, CNNs are effective in extracting spatial dependencies. Specifically, the article by Ma et
al. (2017) offered a CNN-based speed forecasting model applied to large transport networks and demonstrated significant
accuracy improvement compared to both conventional ML and shallow neural network models.
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Architectures that used CNN (to get spatial features) in conjunction with RNN / LSTM (to get temporal dynamics) still enhanced
the performance. As an example, prediction models based on CNN-LSTM or even more sophisticated hybrid architectures have
shown reduced error rates and more responsiveness to a sudden change (Zhou and Zhang, 2020; others).

Moreover, recent studies investigate the use of stacking ensemble models, i.e. a combination of strengths of multiple underlying
learners (e.g. MLP, CNN-LSTM, SVM) with a meta-learner, to increase generalization and robustness, especially when the data
sources are heterogeneous (e.g. cameras, sensors, weather, connected vehicles) (Bhartiya et al., 2024).

ML systems of real-time data integration and streaming

Although in earlier work the work was mostly done with fixed historical datasets, more recent work is on real time or near real
time traffic prediction, using sensor networks, internet of things infrastructure, and streaming information architecture. A new
scheme as of 2025 introduced a distributed ML scheme on real-time highway flow prediction based on streaming frameworks
(e.g. Spark streaming) and segment-wide learned models on per highway segment. This framework manages the abnormal
traffic flow, scales the hyperparameters on a segment, and in real-time predictions. Another 2024 article reported an IoT-based
ML system in which real-time channel data of road sensors is used as inputs to an adaptive prediction model to provide real-
time guidance or signal modification to the driver. These trends are indicative of a change towards a pragmatic implementation,
in which prediction models need to operate on constantly arriving information, need to make low-latency forecasts, and respond
to real-time alterations in traffic.

Identified Gaps & Challenges

In spite of the progress, there are still a number of constraints. To begin with, most studies are based on data within a restricted
geographic area or a fixed sensor network, which begs the question of the generalizability of the models to other cities and
diverse traffic patterns (Razali et al., 2021). Third, heterogeneous real-time data (loop detector, GPS traces, weather sensors,
connected vehicles) are still hard to integrate due to the lack of consistent data formats, available values, and unequal quality
of data, and certain models of deep learning might need to be optimized (edge computing, distributed processing) to ensure
real-time traffic management. Lastly, the standardized benchmarking datasets that integrate streaming information, spatial-
temporal network structure, and exogenous variables are not standardized and, thus, comparison across studies is hard.

Methodology

This paper deploys and tests several Al-driven traffic flow prediction models with real-time and historical traffic data gathered
with sensor networks, GPS-enabled vehicles, and IoT traffic cameras of cities. The four main steps that constitute the
methodology include data collection and integration, preprocessing and feature engineering, model design and training, and
real-time deployment simulation and evaluation.

The data collection and integration will be conducted using the data obtained in the previous step. < |human | >3.1 Data Collection
& Integration: The data collection and integration will be carried out based on the data received in the first step.

Several sources were used to provide real-time traffic information: inductive loop detectors along the road sections, GPS
positions of related vehicles, and counting cameras in the IoT. The municipal traffic authorities archives of historical data were
also used to give a more extended context. More contextual information (weather conditions temperature, precipitation), day-
of-week, public holidays, roadworks/incident logs was fed to take into consideration external factors on traffic movement.The
data streams were received through a real-time streaming platform (e.g., Apache Kafka + Spark Streaming) that allows constant
real-time traffic of sensor records. Data on past was stored within a time-series database.

Preprocessing and Feature Engineering 3.2 Preprocessing Preprocessing involves converting the data into a format
understandable to the analytics engine. < |human| >Preprocessing and Feature Engineering Preprocessing converts the data into
a form that the analytics engine can understand. 3.2 Preprocessing Preprocessing Preprocessing is the conversion of the data
into the form that the analytics engine comprehends.

Cleaning of incoming raw data was done to deal with missing and damaged entries through interpolation and outlier methods.
Synchronization of data across sources was through timestamps and spatial mapping of GPS tracks and sensor information to
existing road segments was done. Time-of-day, day-of-week, holiday, rush-hour flags, weather, events, etc. were
modeled;Sliding-window time-series segmentation was used where a deep learning model needed fixed size sequences as input
and the desired result (e.g. next 5-15 min of flow data - prediction, past 30 minutes - input). CNN-based models were
represented by spatial grids: the traffic data of adjacent road segments at the same timestep were put into 2D matrices, creating
time-series of images of traffic.All the features were normalized (min-max or z-score) to enhance convergence. The data were
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“split into training, validation, and test sets (70 percent / 15 percent / 15 percent), and streaming simulation was performed on
the test set to simulate real-time implementation.

Model Design & Training

The implemented and compared models were:
. Statistical Basic: ARIMA / SARIMA.
. Classical ML:Gradient Boosting Machine (GBM) /Random Forest.

e  Deep Learning: LSTM network, CNN, hybrid CNN-LSTM, and a Hybrid CNN-GRU-LSTM model based on recent
developments.

An example of hyperparameter tuning was done through grid search / random search that included the number of layers,
hidden units, learning rate, batch size and dropout. Adam optimizer, validation loss early stopping and Mean Squared Error
(MSE) loss function were used to train the models. In case of ensemble or hybrid models, the spatial and temporal inputs were
adopted simultaneously.

Simulated Metrics Real Time Deployment Simulation and Evaluation

The test data was fed as a stream (in 5-min intervals) to simulate real-time deployment. Predictions on the next-interval traffic
flow were generated using models. The performance was determined by:

o Mean Absolute Error (MAE)

. Root Mean Squared Error (RMSE)

. Mean Absolute Percentage Error (MAPE).
. R 2 (coefficient of determination)

To determine practicality in real-time use, prediction latency (time elapsed between the ingestion of inputs and the output) is
required.

Resilience checks were made involving input of anomalies (e.g. sudden spikes, such as accidents) and model degradation.
Data Analysis and Findings

After the training and a real-life simulation, we compared model performance based on several metrics, and summed up the
overall findings in Tables 1 and 2.

Table 1: Prediction Accuracy — Baseline vs ML vs Deep Learning Models

Model MAE (vehicles/min) RMSE MAPE (%) R?

ARIMA 15.2 22.8 14.5 0.6

GBM (ML) 10 16.8 9.7 0.78
LSTM (DL) 7.3 10.9 6.4 0.88
CNN (spatial) 8.1 11.7 7.1 0.85
CNNLSTM (hybrid) 6.5 9.3 5.7 0.92
CNN-GRULSTM (hybrid) 6.7 9.5 5.9 0.91

As shown in Table 1, deep learning models significantly outperform the statistical baseline (ARIMA) and classical ML model
(GBM). The hybrid CNNLSTM model achieved the best overall performance, with MAE reduced by ~57% and RMSE by ~59%
relative to ARIMA, and better accuracy than GBM by ~40%.

Table 2: Real-Time Performance — Latency & Robustness

Model Average Latency (ms) Stability under Anomalies

GBM 45 Moderate - error spikes up to +25%
CNN 135 Good - error spikes up to +18%
CNN-GRULSTM 180 Comparable - error spikes ~ +12%
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* Anomalies simulated via sudden flow jumps (accidents / events).

The results of latency prove that even hybrid models of deep-learning can generate almost real-time predictions that are
acceptable to many ITS applications. The Hybrid CNN-LSTM model is the most trade-off between accuracy and latency; can
serve as a reliable fallback in the event of unpredictable anomalies, and is applicable in low resource scenarios.

Discussion

These findings are highly affirmative of Al-based traffic flow prediction models, especially the deep-learning hybrid
architectures, to be useful in real-time use in smart cities. The excellence of the hybrid CNN-LSTM model highlights the
relevance of considering both the spatial and the temporal dependencies that exist between traffic data; the purely temporal
(LSTM) and the purely spatial (CNN) models are excellent and outperformed by the integrated spatio-temporal models. This
follows the results of previous literature, in which the accuracy and robustness of the spatio-temporal architectures were always
higher (Razali et al., 2021; Zhou and Zhang, 2020; Ma et al., 2017).

In a practical perspective, as evidenced by the real-time simulation, these models can be implemented with a fair amount of
latency in a variety of Intelligent Transportation System (ITS) systems, including adaptive signal control, live traffic
notifications, and dynamic route guidance. Although hybrid deep learning is less cost-effective than less complicated ML models
(e.g., GBM),

However, problems are still there. Deep learning models need operational and extensive historical data, alongside real-time
data, to train. In cities with sparse sensor networks or in cities that have no complete data infrastructure, it may be challenging
to gather adequate high-quality data. The heterogeneity of data (diversity of sensor types, gaps, noise) makes it more difficult
to integrate the data and requires a powerful preprocessing and feature engineering. In addition to this, computational and
energy demands can be limiting to deploy on edge devices or resource constrained infrastructure. Based on this evidence and
difficulties, a combined approach to deployment appears to be promising: on one hand, use some of the deep-learning models
where their accuracy and resilience are paramount (ex: major highways, heavy intersection, etc.), and on the other, use the
less-critical models of MLs in other areas, or as a backup when data/sensors coverage is weak. Also, it would be beneficial to
use anomaly detection, data enhancement, and adaptive retraining of models to enhance the resilience against the variations
in traffic, sensor failures, or city dynamics.

Conclusion

This paper has analyzed Al-based traffic prediction flow models on real-time and past data of the traffic sensor networks, GPS
stations, and IoT in urban areas. By benchmarking statistical (ARIMA), classical ML (GBM), and deep-learning models (LSTM,
CNN, hybrid CNN-LSTM, CNN-GRU-LSTM), the study proves that deep-learning hybrid models achieve high predictive
accuracy, reduced errors, and reduced sensitivity to anomalies. The hybrid CNN-LSTM model was the most successful and the
MAE and RMSE were much lower compared to the baseline models, and R2 was more than 0.9, which is a good fit. Further, it
has been evidenced by real-time simulation that such models are capable of running with reasonable latency in most Intelligent
Transportation System (ITS) applications.

The results prove that current Al-based prediction of the traffic flow can be an effective instrument to manage the movement
in smart cities, providing the possibility to control dynamically the signals, prevent congestions, optimize the route, and
proactively handle the incidents by considering data infrastructure challenges, the requirements of the computational resources,
and the generalizability of the models to different urban settings. Future research ought to concentrate on: scaling to a larger
number of cities; adding more data sources (weather, events, use of the public transport, social media); testing the possibilities
of using edge/fog computing to roll out real-time applications; creating adaptive retraining and anomaly detection systems;
and running pilots on existing real-life ITS applications.

Recommendations

Deploy hybrid deep-learning networks (e.g., CNN-LSTM or CNN-GRU-LSTM) to high-density, high-accuracy, high-stake
segments of a network (e.g. major corridors of major cities).Use less accurate and resource-demanding models (e.g., GBM,
Random Forest) in other segments of the network (or as a fallback in low-data or resource-scarce situations).

. Create real-time data streams that combine road sensors, GPS/vehicle data, IoT devices, and context (weather, events)
to feed prediction models.

e  Build sliding-window data ingestion and streaming systems (e.g., Kafka + Spark streaming) to make low-latency
predictions in real-time.
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Add anomaly detecting and resilience in order to deal with accidents, road work, unforeseen demand spikes and
sensor malfunctions.

Apply edge or fog computing to deploy prediction models nearer to data sources so that the latency and bandwidth
consumption can be reduced.
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